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ABSTRACT 

In February of 2014 NASA has launched the core observatory of The Global 

Precipitation Measurement Mission (GPM). Since then, the mission has been providing a 

wealth of observation data collected by the core observatory along with other satellites 

belonging to the mission space constellation. One of the most important data products 

that GPM provides is the Level 4 (L4) rainfall data product called Integrated Multi-

satellitE Retrievals for GPM (IMERG). IMERG is constructed using the raw data 

collected by the Microwave (MW) sensors on board the constellation satellites along with 

the Infrared (IR) sensors on board geostationary satellites and the advance Dual-

frequency Precipitation Radar (DPR) on board the GPM core satellite. The IMERG 

product is available globally for all interested researchers to use. In this dissertation, I 

focus on the applicability of IMERG in hydrologic applications, and specifically in flood 

peak modeling. 

In order to conduct a comprehensive evaluation of IMERG that is oriented 

towards hydrologic modeling. I have explored multiple hydrologic models which can be 

used to produce stream flow estimates using IMERG without the need of parameter 

calibration based on the model’s inputs. The calibration free capability is essential since 

model parameter calibration obscures the effect of the errors associated with the rainfall 

input on the estimated discharges, which in turn will limit our understanding about the 

distribution of the errors in IMERG over space and time. The two hydrologic models we 

used in this study are both physically based distributed models and were setup over the 

domain of the state of Iowa which is located in the United States’ Midwest. I also 

explored the performance of one of the hydrologic models’ component, which is the 
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runoff-routing component, in order to estimate an additional portion of the errors in the 

discharge estimates that is not attributed to the model’s input but rather to the hydrologic 

model itself. 

A significant portion of my dissertation is concerned with identifying and using 

accurate methods to evaluate both IMERG and the hydrologic models’ outputs in a 

hydrologic context that is useful for flood modeling. Several studies have evaluated other 

satellite rainfall products using methods that vary in complexity. Some studies used the 

simplest methods of evaluation, such as, mean aerial differences and standard deviation 

of the differences (additive or multiplicative) compared to a benchmark rainfall product. 

This is done without taking the spatial dependency of the errors in space into 

consideration. Other studies modeled the spatial dependency (correlation) between the 

errors in the rainfall product, however, using Euclidean distance based approaches that do 

not account for the hydrologic basins’ shape and size. Nevertheless, it is important to 

realize that hydrologic models will eventually aggregate the rainfall values, along with 

the errors associated with them, through a stream network that is dichotomous in nature 

and does not comply with Euclidean distance. Thus, we employed a stream based 

evaluation framework, called the Spatial Stream Network (SSN) approaches, to 

characterize the errors in IMERG taking into account the stream distances and the stream 

connectivity information between evaluation sites. Although previously used in 

applications such as modeling water temperatures and pollutant transport, to the best of 

my knowledge this approach has not been used in rainfall product evaluation before this 

study. The SSN analysis of IMERG allowed me to answer the question, “What is the 



www.manaraa.com

vi 
 

proper basin scale which is capable of filtering out the correlated errors in IMERG by 

accumulating the rainfall values through the stream network?” 

Finally, in order to add value to the current methods of evaluating model 

simulated stream flows. I proposed a time based evaluation that is capable of detecting 

peaks in both the observed and simulated flows and estimating the lag time of the 

simulated peaks. Typically, previous studies have used simple skill scores such as Root 

Mean Squared Errors (RMSE), correlation coefficient, and Nash-Sutcliff Efficiency 

(NSE) to evaluate hydrograph performance as a whole, or the difference in time to peak 

which involves primitive peak detection method (e.g., a moving or a defined time 

window). In this dissertation I propose a Continuous Wavelet Transform (CWT) based 

method to evaluate the peak times and shapes produced by the hydrologic model. The 

method is based on filtering the frequencies in the hydrograph by treating it as a signal 

and detecting sharp features in both the observed and time series and the phase difference 

between them. We also emphasized on the importance of the choice of wavelet shape 

used in the evaluation, and how different wavelet shapes can affect the inference about 

the time series.   
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PUBLIC ABSTRACT 

Rivers provide us with one of the most essential natural resources that we need to 

survive, fresh water. Human populations lived alongside rivers since ancient times to use 

their fresh water for drinking and irrigation. This benefit comes with the cost of being 

exposed to the risk of flooding. Without proper monitoring technologies, floods can be 

unpredictable to individuals. This is because a flood can result from a rainfall that 

occurred hundreds of miles away, but was accumulated and transported through rivers to 

the affected location. In addition, floods are not caused by excessive rainfall alone. A 

combination of land and atmospheric conditions must happen at the same time to cause 

floods. For example, a dry soil can absorb large amounts of rainfall and prevent water 

from reaching the rivers to cause floods. Thus, it is important to collect information 

regarding the land and atmospheric conditions simultaneously. In recent decades, 

scientists produced instruments that can monitor atmospheric and land conditions over 

large areas. These instruments can be attached to satellites that revolve around earth and 

can stay in space for many years, thus providing global coverage for a long time. These 

instruments provide valuable information, however, we need to know how accurate they 

are. My Ph.D. thesis topic is to evaluate the performance of one of the instruments that 

monitor rainfall from space. This evaluation is intended to solve one piece of the puzzle, 

which includes evaluating the performance of other instruments that can monitor other 

natural conditions such as humidity, temperature, and soil water content, among others. 

Together, all these instruments can provide us with a complete picture of the existing 

natural conditions. This information can then be used by experts in order to warn the 

public in case of potential floods before they happen.  
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CHAPTER 1: Introduction 

Flooding is one of the most destructive natural hazards in the United States and 

many other regions across the world. Flood related damages include economic losses as 

well as losses in lives. During the past decade alone, the central United States 

experienced many floods (e.g., 2008, 2011, 2013, and 2014) that caused economic losses 

estimated by billions of dollars and many fatalities (Mallakpour, 2016; NCDC, 2015). 

The 2008 flood in particular caused about $11 billion in damages and resulted in 24 

fatalities (Mallakpour, 2016; Mutel, 2010). Thus, it is crucial to continuously monitor 

floods in order to be able to warn the public in case of potential floods. Nevertheless, 

excess stream discharges which cause floods are a result of complex land and 

atmospheric interactions (e.g., rainfall, temperature, pressure, humidity, and soil 

moisture). Monitoring these process everywhere using point measurement instruments is 

not possible. Thus, remote sensing of environmental and atmospheric variable plays an 

important role in flood modeling and predictions. Remote sensing of atmospheric and 

surface variables is available through both ground and space based instruments. However, 

these instruments provide indirect measures of the variables they are monitoring based on 

theoretical algorithms that are prone to errors. 

In this dissertation I focus on evaluating the rainfall estimates provided by earth 

observing satellites. Satellite rainfall estimates provide a wealth of information to 

interdisciplinary applications related to the water cycle. This is due to the availability of 

observation records that cover a period of over two decades. In addition, satellite rainfall 

products provide global rainfall estimates in a gridded format that is compatible with 

numerical weather prediction models and distributed hydrologic models. During the past 
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couple of decades, a variety of satellite rainfall products emerged. These products used 

information provided by geostationary Infrared (GEO IR) satellites and Passive 

Microwave (PMW) Low Earth Orbiting (LEO) satellites. However, each product has its 

own algorithm which incorporate the information retrieved from satellites in different 

ways. Moreover, each of these products have its own spatial and temporal resolution 

based on the purpose for which it was created. Examples of products that have been 

heavily used and evaluated during the past two decades include, first, the Tropical 

Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 

Product produced by NASA. Second, the Climate Prediction Center (CPC) which is a 

part of the National Oceanic and Atmospheric Agency’s (NOAA) produced the CPC’s 

Morphing Technique (CMORPH) which produces a high resolution satellite rainfall 

product. Finally, the Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks (PERSIANN) produced by the Center for Hydrology and 

Hydrometeorolgy, at the University of California, Irvine. 

TMPA rainfall estimates are produced in 0.25˚ x 0.25˚, three hourly, spatial and 

temporal resolutions respectively, with latitude coverage between 50˚ N and 50˚ S. 

TMPA merges the GEO IR rainfall estimates with the estimates collected by PMW 

sensors such as TRMM’s Microwave Imager (TMI), Advanced Microwave Sunding Unit 

(AMSU), Special Sensor Microwave/Image (SSM/I), and th Advanced Microwave 

Sounding Radiometer-Earth (AMSR-E) observing system. The method used in TMPA 

calibrates the IR estimates using PMW data before merging them. In addition, TMPA 

combines satellite estimates with monthly rain gauge estimates provided by the Golobal 

Precipitation Climatology Project (GPCP). 
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CMORPH rainfall estimates are available at a higher spatial resolution of 8 km x 

8 km (at the equator) and half hourly temporal resolution. The main difference between 

CMORPH and TMPA products is that CMORPH uses only PMW rainfall estimates. 

However, motion vectors from GEO IR observations are used to interpolate these rainfall 

estimates in space and time. This is because LEO satellite do not provide continuous 

earth coverage due to the nature of their orbits. Thus, interpolation is necessary to fill the 

gaps between satellite overpasses. 

PERSIANN’s method of rainfall estimation is based on artificial Neural Networks 

methods. This method detects clouds observed by the GEO IR and PMW satellites and 

then assigns rainfall estimates to these locations based on cloud shape and other 

characteristics that are related to rainfall rate. Throughout the process, PMW observations 

from TMI are used to adjust the rainfall estimation model parameters (Hong et al. 2004). 

In February, 2014, NASA launched the Global Precipitation Measurement (GPM) 

mission’s core satellite. This satellite is considered as a replacement of the recently 

retired TRMM core satellite, with improved instruments on board. The major 

improvement to this mission is the addition of the Dual-frequency Precipitation Radar 

(DPR). The radar has two bands, first, the Ku-band which is similar to that incorporated 

in the PR on board TRMM satellite, second, the DPR has a higher frequency band called 

the Ka-band which is useful in detecting snow and light rain. This is applicable in the 

case of the GPM mission since the orbit of the new satellite has higher inclination 

compared to that of the TRMM satellite which allows it to pass over cold regions. The 

rainfall estimates by the GPM mission were recently released to the public. The 

magnitude and nature of the errors associated with the new product is yet to be 
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understood. My product of interest is the recommended level 4 research product called 

Integrated Multi-satellitE Retrievals for GPM (IMERG). This product merges the 

methodologies of the three older rainfall products (TMPA, CMORPH, and PERSIANN), 

to produce a high resolution product (half hour, 0.01˚ x 0.01˚). However, my evaluation 

of this important new product was hydrology oriented, since I am mainly interested in 

flood modeling and prediction. 

For this purpose, it is necessary to have hydrologic models that can convert 

rainfall to runoff without needing calibration based on the rainfall input. This is important 

because calibration will obscure the true performance of the model inputs and limit our 

understanding of the rainfall products as model inputs. In chapter 2, I conducted a study 

which aims to evaluate hydrologic models that match this criterion. The main goal of this 

study was to investigate the performance of independent hydrologic models components, 

mainly, the routing component of the distributed hydrologic models. I conducted a 

comparison between two routing components that are based on linear and non-linear 

approaches, and proved that the routing component can have a significant effect on the 

performance of the overall hydrologic model. The results of this study showed that using 

the non-linear routing component significantly improved the model performance. Thus, 

the two hydrologic models I later in this dissertation incorporate none-linear routing. 

In chapter 3, I conducted the evaluation of IMERG rainfall estimates. The 

evaluation consists of two main steps. First, rainfall to rainfall comparisons. The 

benchmark product used in this comparison is the Multi-Radar/Multi-Sensor (MRMS) 

ground radar based rainfall product produced by the National Severe Storm Laboratory 

(NSSL). In this step I used traditional statistical skill scores such as bias, Root Mean-
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Squared Error (RMSE), and correlation coefficient. Moreover, I performed spatial 

statistical characterization of the space-time dependency between rainfall estimates of 

each product separately using the spatio-temporal semi-variograms. I also constructed 

these semi-variograms for the discrepancies between IMERG and MRMS to explore if 

they are correlated in space or time. The semi-variograms showed that IMERG rainfall 

estimates have higher correlation in space and time in comparison to MRMS. This can be 

due to the interpolation method which the PMW estimates undergo during product 

construction. This in turn resulted in rainfall discrepancies that are also correlated in 

space, however, the temporal dependence of the discrepancies was negligible in time. 

Now we move on the second step towards the second evaluation step. In this step 

I evaluate IMERG as a hydrologic model input. I forced two hydrologic models with both 

IMERG and our benchmark product MRMS. The combination of models and rainfall 

products is useful as a mean of investigating if the quality of the simulated stream 

discharges is related to the rainfall input or the model itself. Both models do not need to 

be calibrated based on the rainfall input. This is important because the calibration process 

obscures the effect of the errors in the model inputs by modifying the parameters. The 

evaluation included skill scores similar to those I used for rainfall to rainfall comparisons 

such as, correlation, RMSE, bias, as well as contingency table estimates (e.g., HR, FAR, 

CSI, Bias ratio). The latter methods were used specifically to evaluate the performance of 

the model in detecting peaks over certain thresholds. This is necessary for evaluating the 

model in flood forecasting framework. However, these measures cannot capture 

simulation peak time precisely. Therefore, I estimated other statistics such as time to peak 

which is widely used by the hydrologic community. 
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In chapters 2 and 3, I performed the evaluation of IMERG using traditional 

statistical skill scores. These skill scores provide limited insight about the performance of 

IMERG that is not hydrology oriented. For example, all the spatio-temporal dependency 

comparisons described above were done using the gridded rainfall products in IMERG 

resolution. Nevertheless, since we are interested in the performance of IMERG in 

hydrologic context, it is important to observe the effect of the accumulation which the 

rainfall product undergoes by the hydrologic model on the rainfall discrepancies 

dependency range. Ideally, if the errors are completely random they should cancel each 

other as they accumulate downstream. Studies such as Quintero et al., (2016) and Cunha 

et al., (2015) provided an evaluation framework of rainfall discrepancies that mimics the 

accumulation process done by the hydrologic model.  

I tackle this problem in chapter 4 by providing a hydrologic based evaluation of 

IMERG. As a demonstration, I used this framework to evaluate IMERG over a mid-sized 

basin located in eastern Iowa (approximately 17,000 km2), called the Cedar River basin. 

The evaluation focused on a major flooding event (second largest on record) which 

occurred during the last week of September, 2016. IMERG errors during this period did, 

to a large degree, cancel out as they accumulated downstream as we expected. However, 

now we are faced by a new challenge, mainly, how can we describe the spatial structure 

of the accumulated errors? This is because all rainfall estimates are now assigned to 

stream segments rather than a latitude and longitude based geographical location. 

Thus, it was necessary to use a statistical approach which can utilize the stream 

segment based rainfall estimates and use network distances rather than the Euclidean 

distances connecting the rainfall estimate locations. I accomplished this task by using a 
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stream distance based spatial statistical modeling framework. This method is called the 

Spatial Stream Network (SSN) approach (Ver Hoef et al., 2006). Not only does this 

method used the stream distance rather than Euclidean distance, it also accounts for 

stream network connectivity information. This is important because the dependency of 

the accumulated rainfall estimates is higher between connected streams in comparison to 

unconnected streams. This is also the case for many other hydrologic variables (e.g., 

point source pollutants, fish populations, and sediment and nutrient transport) where the 

magnitude of a variable can be very different between two unconnected streams despite 

their geographical proximity. 

I began investigating the new method by comparing the semi-variograms of the 

rainfall errors which I produced using stream distance and connectivity information to the 

traditional Euclidean based semi-variograms. The two semi-variograms obtained from the 

connected and unconnected streams are called the Torgegram (Zimmerman and Ver 

Hoef, 2016). The results showed that the errors in flow-connected stream are correlated 

for significantly longer distances (almost the double) in comparison to the errors in flow-

unconnected streams. In addition to calculating the Torgegrams, SSN provide us with 

valid covariance models that can be used for spatial statistical modeling and prediction. 

Unlike the traditional statistical linear models, spatial linear models allow covariance 

between the model errors. One way to generate the covariance structure is by using a 

moving average construction method. The moving average functions used to compute the 

covariance can take many forms (e.g., exponential, spherical, linear) and also incorporate 

network connectivity information. Moving average functions are unilateral (pointing in 

on direction). The moving average functions which are pointing in the upstream direction 



www.manaraa.com

8  
 

are called tail-up functions and allow covariance between flow-connected streams alone. 

The moving average functions which point in the downstream direction allow covariance 

between both flow-connect and flow-unconnected sites, and are called tail-down 

functions. The choice of the moving average function is based on the nature of the 

variable being analyzed. In our case, rainfall covariance should be allowed between both 

flow-connected and flow-unconnected sites. This is because some low order streams can 

be located within the same rainfall pixel thus have similar errors. However, it is expected 

that the degree of covariance between flow-connected streams is higher. Using a mixed 

covariance model can account for this effect (Ver Hoef et al., 2006; Zimmerman and Ver 

Hoef, 2016). I tried several model types using pure tail-up or pure tail-down models as 

well as a combination of mixed models. All mixed SSN based models outperformed the 

traditional Euclidean based models with different degrees. This indicated the possibility 

of better prediction of rainfall error fields over stream networks, which is relevant to 

hydrologic modeling applications. 

In addition to the limitations of the skill scores used to evaluate the spatial rainfall 

estimates of IMERG, there are also limitations in the field of evaluating IMERG as a 

model input. For example, identifying and measuring the difference between modeled 

and observed peak times is traditionally done using simple methods that are useful, 

however, they can lead to false identification or unfair comparison between the modeled 

and observed discharges. Thus, I decided to explore other possible ways of identifying 

the modeled peaks that correspond to the observed peaks.  

In chapter 5, I describe how I found out that by treating the hydrograph as a signal 

and using signal processing methods we can obtain accurate peak timing evaluation 



www.manaraa.com

9  
 

estimates. The methods used in signal processing vary in complexity, starting with the 

Fourier Transform, to Fast (windowed) Fourier Transform (FFT), or Continuous Wavelet 

Transform (CWT). I focused on the CWT due to its advanced capabilities in identifying 

sharp features in the signal and distinguishing them from broad features. This is 

particularly useful to distinguish peaks from base flow. I will also describe the cross 

wavelet transform (XWT) which I used to relate the simulated peaks to the observed 

peaks. The phase difference between the real and imaginary components of the XWT can 

be converted to time difference which directly corresponds to the time difference between 

the CWT of the simulated and observed flows. I also emphasized on the effect of the 

choice of wavelet shape on the estimated time lag. 

The remainder of this dissertation is organized as follows. Chapter 2 contains the 

performance analysis of the hydrologic models I used in IMERG evaluation. Chapter 3 

contains the evaluation analysis of IMERG, this includes the rainfall to rainfall 

comparison with our benchmark product IMERG, and it also includes the evaluation of 

IMERG as model input. Chapter 4 contains the SSN analysis for characterizing IMERG 

errors in a network based framework. Chapter 5 contains the time based evaluation 

framework for hydrologic models using CWT and XWT. In Chapter 6 I summarize the 

findings in this dissertation and list the conclusions.  
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CHAPTER 2:  An Investigation of Errors in Distributed 

Models’ Stream Discharge Prediction Due to Channel Routing 

2.1. Introduction 

Floods result from complex interactions between rainfall and several other 

processes occurring in the atmosphere and landscape.  Accurate quantification and 

prediction of stream discharges is a challenging topic that the hydrologic research 

community has been trying to overcome for decades.  Over the summer of 2015, the 

National Water Center (NWC), located in Tuscaloosa, Alabama, USA, launched the 

National Flood Interoperability Experiment (NFIE) Summer Institute, a summer 

workshop that allowed participants (mainly graduate students) to experiment with 

research topics related to national flood estimation and forecasting, ranging from runoff 

generation and discharge estimation to digital inundation mapping and flood risk 

management.  The first author participated in NFIE 2015 and evaluated the performance 

of the NFIE-Hydro framework, a hydrologic modeling framework that can provide 

nationwide stream flow estimates in the United States. 

In this chapter, we build on this effort by identifying possible ways to improve the 

NFIE-Hydro framework (Maidment, 2016).  The NFIE-Hydro framework consists of a 

combination of a runoff-generating Land Surface Model (LSM), Noah Multi-Parameter 

(Noah-MP) LSM (Niu et al., 2011), and the runoff discharge routing component called 

the Routing Application for Parallel Computation of Discharge (RAPID) (David et al., 

2011).  It is also simple to incorporate the runoff estimates from other LSM’s, such as or 

the Variable Infiltration Capacity (VIC) (Xia et al., 2012a, b) as a substitute to the runoff 

estimates from Noah-MP.  Previous studies evaluated the VIC-RAPID combination (e.g., 
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David et al., 2013; 2015; Tavakoly et al., 2016) over multiple regions in the United 

States.  In addition, studies (e.g., David et al., 2011; 2013) evaluated the accuracy of 

stream discharge estimates resulting from different LSMs (e.g., VIC, Noah LSM) when 

combined with RAPID.  In this study, however, we restrict our focus to studying the 

contribution of the routing component to the quality of the discharge estimates.  We do so 

by using the same runoff estimates from the VIC LSM to derive two routing components 

in a controlled environment that ensures that the differences in the stream flow estimates 

result from the routing components alone.  The two routing components are RAPID, and 

the routing component developed by the Iowa Flood Center (IFC) and implemented in 

the full IFC in-house hydrologic model called the Hillslope-Link Model (HLM) (Small et 

al., 2011; Ayalew et al., 2014; Krajewski et al., 2016).  

In this chapter, we do not intend to compare the routing components as software 

packages, which would require including other aspects (e.g., computational time and ease 

of implementation in different study areas etc.), however, previous studies investigated 

these issues (e.g., David et al., 2016 for RAPID; and Small et al., 2011 for the HLM).  

The routing methodologies incorporated in the routing components are, the simplified 

linear Muskingum routing method in the case of RAPID (Cunge, 1969; David et al., 

2011), and the non-linear routing methodology based on the power law relationship 

between the stream discharge and mean flow velocity, and the network hydraulic 

geometry self-similarity assumption described in Mantilla et al., 2005 and Mantilla 2007. 

We tested both routing components’ performances over the Cedar River basin, an 

average sized basin located in eastern Iowa.  The basin covers approximately 16,862 

km2, and is monitored by about 11 United States Geological Survey (USGS) gauges.  To 
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conduct a fair comparison, we used the same stream flowline and sub-catchment 

geometries provided by the National Hydrography Dataset Plus Version 2 (NHDPlus 

V2).  The common runoff input obtained from the VIC model has a spatial resolution of 

1/8˚x1/8˚ and a temporal resolution of 1 hour and available at 

(http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). We followed the same runoff-

routing coupling process explained in Tavakoly et al. (2016). Our results show an 

improvement in the streamflow estimates, especially in the aspects of peak timing and 

magnitude, due to the implementation of the new routing methodology.  

2.2. Methods 

Available routing techniques generally belong to one of these two major routing 

groups.   The first group of routing methodologies relies on solving the Saint-Venant 

equation of flow (also called hydraulic routing).  These methods vary in their complexity 

based on the assumptions they use to solve the Saint-Venant equation and usually require 

accurate river field measurements (e.g., channel cross-sectional geometry, channel bed 

and bank roughness, etc.)  Based on their level of complexity, these routing components 

can be computationally expensive and difficult to implement on large river networks.  

Due to its simplicity, the most commonly used approximation for the Saint-Venant 

equation is the kinematic wave approach.  The kinematic wave approach presented in 

(e.g., Chow et al., 1988, Vergara et al., 2016; Wu et al., 2014) assumes that the only 

forces needed to balance the gravity forces acting on the flow are the friction forces (i.e. 

steady uniform flow).  Solving the kinematic wave approximation can take different 

forms.  One approach is to solve the kinematic wave with empirical approaches based on 

idealized representation of the channel properties (e.g., Wu et al., 2014).  Another 
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approach is to statistically extend the relationship between the rating curve parameters at 

locations where discharge vs. cross-sectional area information are available to ungauged 

locations by relating the rating curve parameters to landscape and hydro-climatological 

properties, such as, relief ratio, mean rock volume percent, mean annual rainfall and 

temperature (e.g., Vergara et al., 2016).  

The second major routing group uses storage based hydrologic routing 

techniques. Hydrologic routing is a simpler approximation of the one-dimensional Saint-

Venant equation that involves ignoring the discharge momentum term of the equation, 

such as the Muskingum method described in Cunge (1969), or the Nonlinear Cascade 

Reservoir method described in Kim and Georgakakos (2014).  On the other hand, some 

hydrologic routing methodologies use a simplified version of the Momentum equation 

such as the Muskingum-Cunge described in Cunge (1969) or the non-linear method 

presented in Mantilla (2007) based on scale invariance and network hydraulic geometry 

self-similarity.   

In this chapter, we are going to compare two hydrologic routing methods, the 

Muskingum method and the method presented in Mantilla (2007).  A unique aspect of the 

study presented in this chapter is that it compares two hydrologic routing methods using 

the same input from the widely used LSM VIC, in a controlled environment where the 

runoff amounts ingested into the sub-catchments of each routing component are identical.  

This ensures that the discrepancies in the discharge estimates obtained from the routing 

components are strictly due to the difference in the routing methodologies they utilize.  In 

the next two subsections, we provide a brief description of these routing components we 

use in this study and the methods they utilize.   
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2.2.1. The RAPID stream flow routing component  

The Muskingum method incorporated in RAPID is a one-dimensional diffusion 

wave approximation of stream discharge based on the continuity equation that ignores the 

momentum equation; in other words, it is a storage-based equation.  The equation 

depends on two parameters: a storage constant k that has a dimension of time, and x, a 

dimensionless weighting parameter based on the relative influence of the inflow and 

outflow.  As described in David et al., (2011a), the finite difference form of the 

Muskingum method is 

𝑞𝑖(𝑡 + ∆𝑡) = 𝑐1[𝑞𝑖
𝑢𝑝(𝑡 + ∆𝑡) + 𝑞𝑖

𝑒(𝑡 + ∆𝑡)]  

 +𝑐2[𝑞𝑖
𝑢𝑝(𝑡) + 𝑞𝑖

𝑒(𝑡)] + 𝑐3𝑞𝑖(𝑡)  (2.1) 

where, 

𝑐1𝑖 =
∆𝑡

2
 − 𝑘𝑖𝑥𝑖

𝑘𝑖(1 − 𝑥𝑖)+
∆𝑡

2

 , (2.2) 

𝑐2𝑖 =
∆𝑡

2
 − 𝑘𝑖𝑥𝑖

𝑘𝑖(1 − 𝑥𝑖)+
∆𝑡

2

 , (2.3) 

and  

𝑐3𝑖 =
𝑘𝑖(1−𝑥𝑖)−

∆𝑡

2

𝑘𝑖(1−𝑥𝑖)+
∆𝑡

2

 , (2.4) 

For any reach index 𝑖, 𝐶1𝑖 + 𝐶2𝑖 + 𝐶3𝑖 = 1.  In equation 1, 𝑞𝑖 is the outflow of a 

reach 𝑖; 𝑞𝑖
𝑒 is the lateral flow within a reach 𝑖 (surface and subsurface); 𝑞𝑖

𝑢𝑝
is the inflow 

to the reach from upstream links; and t, Δt are the simulation time and the time step, 

respectively.  The output flows from RAPID are affected by the fact that the Muskingum 
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method assumes a uniform water surface profile between the upstream and downstream 

ends of a channel reach.  Also, obtaining accurate k and x values is a difficult task that 

often includes calibration and optimization by using observations and is dependent on the 

calibration dataset.  The RAPID routing component has an option to optimize the 

parameters k and x based on available USGS gauge observations.  In this study, we used 

the calibrated k and x dataset available at Tavakoly (2017) and described in Tavakoly et 

al., (2016).  RAPID assumes that the lateral flow 𝑞 
𝑒 enters the channel instantly at the 

upstream junction of the stream.  Lastly, the common approach for handling the runoff 

maps using RAPID (e.g. David et al., 2011, 2013, 2015, 2016; Tavakoly et al, 2016) 

lumps surface and subsurface runoff estimates from the LSM and routs them into the 

stream channels simultaneously.  

2.2.2. The HLM routing component 

The HLM routing is based on the method presented in Mantilla (2007) where the 

velocity in the channel element can be obtained using a nonlinear power law relationship 

with the upstream served area and the stream discharge (similar to that by Paik and 

Kumar (2004)), where the velocity corresponding to a certain discharge 𝑞 can be 

described as  

𝜈(𝑞) = 𝜈0𝑞𝑙𝑖𝑛𝑘
𝜆1𝐴𝜆2  (2.5) 

Consequently, the flow transport equation can be described as follows: 

𝑑𝑞𝑙𝑖𝑛𝑘(𝑡)

𝑑𝑡
=

𝜈0𝑞𝑙𝑖𝑛𝑘
𝜆1 (𝑡)𝐴𝜆2

(1−𝜆1)𝑙
[𝑎ℎ (𝑞𝑠𝑢𝑟𝑓(𝑡) + 𝑞𝑠𝑢𝑏𝑠𝑢𝑟𝑓(𝑡)) − 𝑞𝑙𝑖𝑛𝑘(𝑡) +

𝑞𝑢𝑝(𝑡)] (2.6) 
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where 𝑞𝑙𝑖𝑛𝑘and 𝑞𝑢𝑝 are the output discharges from a link and inflow from upstream links 

at time 𝑡; 𝐴 is the total upstream area draining into the hillslope; 𝑎ℎ and 𝑙 are the hillslope 

area and length, respectively; and 𝜆1, 𝜆2 and 𝜈0 are global parameters of the water 

velocity component in the model and are set to 0.2, −0.1 and 0.3, respectively.  More on 

how to estimate these parameters and how they vary across geographic locations in the 

United States Midwest can be found in Mantilla (2007) and Ghimire et al., (2017).  In 

this chapter, the surface and subsurface runoff estimates, 𝑞𝑠𝑢𝑟𝑓 and 𝑞𝑠𝑢𝑏𝑠𝑢𝑟𝑓 

consequently, are lumped prior to routing in a similar fashion to RAPID.  We matched 

our model setup to that used to prepare the RAPID parameters’ values to ensure fair 

comparison. However, we conduct our comparisons at a mid-sized basin included in this 

domain because it is well monitored with USGS stream gauges across a wide range of 

scales.  In addition, the effect of artificial storage in this basin is negligible.  It is also 

important to note that the estimation of the HLM model parameters is independent of the 

rainfall-runoff model’s input, Mantilla (2007).  

2.2.3. Evaluation procedure 

We conduct our evaluation at the Cedar River basin, which is located in eastern 

Iowa.  The Cedar River Basin has a drainage area of 16,814 km2.  Eleven USGS gauges 

monitor the area and cover a range of scales (from 776 km2), and are not affected by 

river regulation.  The USGS gauge locations are shown in Figure 2.1 and the areas they 

serve are listed in Table 2.1. (ordered according to the labels in Figure 2.1).  Our study 

period is the warm season (May through September) of 2014. We allowed a two-month 

spin-up period (runs started on March 1st) and proper initialization for both models.  
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Both simulated and observed discharges used in this study have an hourly temporal 

resolution. 

We calculate three statistical skill scores at each gauge location, the percent Root 

Mean Square Error RMSE, correlation coefficient, and Nash-Sutcliffe efficiency (NSE).  

The reader is encouraged to review Moriasi et al., (2007) and Tavakoly et al., (2016) to 

learn more about model’s performance classifications based on NSE, RMSE, and 

Correlation Coefficient performance categories.  The equations used to calculate these 

scores are as follows: 

% 𝑅𝑀𝑆𝐸 = √∑ (𝑞𝑠𝑖𝑚
𝑡 −𝑞𝑜𝑏𝑠

𝑡 )
2𝑛

1

𝑛
 .

1

𝑚𝑎𝑥 (𝑞𝑜𝑏𝑠)
. 100 (2.7) 

𝐶𝑜𝑟𝑟 =
𝐸[(𝑞𝑜𝑏𝑠−𝜇𝑜𝑏𝑠)(𝑞𝑠𝑖𝑚−𝜇𝑠𝑖𝑚)]

𝜎𝑜𝑏𝑠 𝜎𝑠𝑖𝑚
 (2.8) 

𝑁𝑆𝐸 = 1 −
∑ (𝑞𝑜𝑏𝑠

𝑡 −𝑞𝑠𝑖𝑚
𝑡 )2𝑛

𝑡=1

∑ (𝑞𝑜𝑏𝑠
𝑡 −�̅�𝑜𝑏𝑠)2𝑛

1
 (2.9) 

 

In order to better assess the performance of both models in detecting peak times 

and magnitudes we calculated the hit rate (HR), false alarm ratio (FAR), and the critical 

success index (CSI) at each station using the two- year, five-year and ten-year return 

period peak discharges provided by Eash et al., (2013).  Unfortunately, these records are 

not available at all stations due to lack of sufficient stream discharge records.  Only one 

station out of our eleven stations (station number 7) has an insufficient peak discharge 

record.  The formulas we used to calculate HR, FAR, and CSI are as follows: 

𝐻𝑅 =  
𝑎

𝑎+𝑐
  (2.10)  
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𝐹𝐴𝑅 =  
𝑏

𝑎+𝑏
  (2.11) 

𝐶𝑆𝐼 =  
𝑎

𝑎+𝑏+𝑐
  (2.12) 

where a is the instances where the discharge exceeded a certain threshold in both model 

estimates and observed flow; b is when the model estimates exceed the threshold but the 

observed flow is lower than this threshold; and c is when the observed flow exceeds the 

threshold but the model estimates do not.  All these parameters are calculated based on 

hourly discharges.  In short, HR represents the instances when the model predicted that 

the flow would exceed a certain threshold correctly (ranges from zero (Poor) to one 

(Good)).  FAR represents the instances when the model overestimated the discharge and 

exceeded a certain threshold (ranges from zero (good) to one (Poor)).  CSI, also known as 

threat score, represents how well the exceeding events of the model correspond to those 

of the observations by accounting for the incorrect modeled exceedances in the 

denominator (ranges from zero (Poor) to one (Good)). 

We have also calculated the difference in time to peak 𝛥 𝑇𝑝 and percent 

difference in peak discharge 𝛥 𝑄𝑝 as defined in Vergara et al., (2016), where, as shown in 

(13) the difference in peak time will be negative in case the simulated peak 

(𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
𝑝 ) occurs ahead of the observed peak (𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑝 ), but positive in case the 

simulated peak occurs after the observed peak.  Similarly, from (14) the percent 

difference in peak magnitude will have a positive sign in case the simulated peak  

(𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
𝑝 ) is greater in value than the observed peak and a negative sign in case the 

simulated peak is smaller in value than the observed peak (𝑄𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑝 ).  
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 𝛥 𝑇𝑝 = 𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
𝑝

− 𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑝

  (2.13) 

 𝛥 𝑄𝑝 = (𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
𝑝

− 𝑄𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑝

)/𝑄𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑝

∗ 100   (2.14) 

2.3. Results 

We begin our comparison between the routing components by visually inspecting 

the hydrographs presented in Figure 2.2.  The red hydrographs correspond to the VIC-

HLM combination, the blue hydrographs correspond to the VIC-RAPID combination, 

and finally the black hydrographs correspond to the USGS observations.  When available, 

the return period peak discharges are represented by horizontal gray lines on top of the 

hydrographs (two-year peak discharge is always represented by the lowest gray line 

above it is the five-year peak discharge and the highest gray line is the ten-year peak 

discharge).  Two main peaks characterize the observed flow of the year 2014; the first 

took place around mid-June, and the second around early July.  High flood levels were 

observed in the Cedar River basin during the year 2014 warm season (June, July and 

August); with peak flows often exceeding the 5-year or 10-year return periods discharge 

across the whole basin.  A major characteristic of the simulated discharges is that they 

consistently underestimate the peak discharges in many of the stations, especially during 

the mid-June event.  Since both routing components receive the same runoff estimates, 

and the runoff is eventually routed through the channels; the LSM VIC seems to be a 

major contributor to this underestimation in the overall water volume.  An important 

feature of the VIC-RAPID hydrographs is that they exhibit a flashy behavior, which is 

dampened as the basin scale increases. This flashy behavior is mainly due to the linear 
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routing method incorporated in RAPID (simplified Muskingum) in comparison to the 

non-linear routing method incorporated in the HLM routing component. 

In Figure 2.3 we present the statistical skill scores of the routing components 

spatially over the stream network.  The right column shows the skill scores of the HLM 

routing, while the left column shows the RAPID skill scores.  The top row shows the 

comparison of the correlation coefficients between the simulated and observed 

hydrographs, while the middle and bottom rows show the % RMSE and NSE 

comparisons, respectively.  These results show that the HLM routing components 

resulted in an improved simulated discharge estimates across scales (higher correlation 

and NSE, and lower % RMSE).  We included a summary of these skill scores in Table 

2.2..  By looking at Table 2.2., one can infer that the non-linear routing exhibits a more 

stable performance across different locations (lower standard deviation, SD) with a better 

overall performance compared to linear routing. 

So far, we have evaluated the time series of discharges as whole, without details 

about the performance of the routing components during extreme events.  Hence, we 

evaluated indices such as HR, FAR and CSI at all station locations as well as the 

difference in time-to-peak and percent difference in peak magnitude.  We start by 

comparing the HR, FAR and CSI scores at each location for the 2-year, 5-year and 10-

year return period discharge estimates.  Due to the overall underestimation in the 

simulated peak discharges caused by the LSM, the simulated discharges rarely reached 

the 10-year return period, which is not the case in the observed flow.  Thus, the scores 

estimates for the 10-year return period are not available.  The left column of Figure 2.4 

shows the estimates for the 2-year return period and the right column shows the scores of 
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the 5-year return period.  The red bars represent the HLM routing component while the 

blue bars represent the RAPID component represent.  The HLM routing component 

outperformed the RAPID component by having higher 2-year HR and CSI values, and 

lower FAR values.  Despite the overall underestimation in discharge estimates, the effect 

of RAPID flashy behavior is evident in the 5-year return period’s FAR estimates.  

However, this allowed RAPID to capture a small percentage of the times when the 

observed flow was in fact above the 5-year return period threshold (e.g., the estimates at 

station number 8).  

Both routing components experienced an improvement in peak timings and 

magnitudes across scales during the early July peak.  However, by visualizing the 

hydrograph one can observe that the improvement is more significant in the case of 

RAPID.  This might be due to the spatial distribution of the runoff estimates, where the 

locations that received a significant amount of runoff during that time are mostly located 

on the western side of the basin (based on observed discharges at these stations).  The 

land cover is generally the same across the basin, and the terrain is flat in this region (not 

shown), hence, they do not contribute to the performance enhancement in case of RAPID.  

In order to have a better idea about the performance in peak time and magnitude we 

calculated 𝛥 𝑇𝑝 and 𝛥 𝑄𝑝 for each peak at all station locations.  Table 2.3. contains the 

outcome of this analysis where the left panel of the table compares the performance of 

the routing components during the mid-June peak (Event 1), and the right panel for the 

performance of the routing components during the early July event (Event 2).  The 

summary of statistics at the bottom four rows of the table shows that for the first peak, 

although both routing components seem to have placed the peaks ahead of time, RAPID 
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estimates experienced a much earlier peak time when compared to the observed peak.  

On average, both routing components underestimated the peak magnitudes, however, 

with a higher variability (standard deviation) in the case of RAPID due to its flashy 

behavior.  Both routing components performed much better in estimating the second peak 

timing with similar standard deviation of peak time errors.  Nevertheless, the HLM 

underestimated the peak magnitudes and RAPID overestimated them, with greater 

variance in case of RAPID.   

2.4. Conclusions and recommendations 

The main goal of this study is to highlight the contribution of the stream discharge 

routing methodologies to the errors in simulated stream discharge estimates.  We 

observed that the routing methodology have a significant impact on our hydrologic 

model’s performance.  This difference in performance generally decreases as the basin 

scale increases.  As expected, the linear Muskingum method resulted in a flashy behavior 

in the simulated discharges, especially in smaller basin scales.  The non-linear routing 

method incorporated in the HLM routing component resulted in improved discharge 

estimates characterized by better peak times and magnitudes.  It is evident that a major 

contributor to the errors in the estimated discharges is the LSM runoff estimates, which in 

turn will have an effect on the routing components performance, since all the velocities in 

the streams are determined by the amount of runoff available in their served area.  

However, determining the amount of error caused by the LSM is not our focus in this 

study.  Future recommendations for this study include, first, expanding the study domain 

to include a wider range of scales and different hydro-climatic regions.  This however 

may require implementing reservoir operation in the routing components in order to have 
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a fair comparison with the observed discharges.  Second, evaluating the HLM routing 

component with runoff estimates from a variety of LSMs.  In addition, one can further 

investigate the effect of the spatial distribution and location of rainfall-runoff events on 

the peak times of RAPID.  The latter recommendation arises from our observation that 

RAPID was able to detect a relatively close peak time in some occasions (e.g., the early 

July event, although the peak magnitude is inaccurate in most locations).  Finally, a more 

comprehensive technique of estimating the peak time difference based on Continuous 

Wavelet Transform (CWT), which also accounts for peak magnitude and range, is 

described in ElSaadani and Krajewski (2017).  We hope that our study will be followed 

by many similar investigations by others in different parts of the country and collectively 

will contribute to improve national flood estimation and forecasting platforms.  
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Table 2.1. A list of USGS gauges and their served area. 

Rank USGS ID Area (km2) 

1 5459500 1342 

2 5457700 2792 

3 5458000 766 

4 5463000 911 

5 5458900 2213 

6 5458500 4338 

7 5458300 4044 

8 5463500 780 

9 5464000 13333 

10 5464220 773 

11 5464500 16862 
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Table 2.2. Summary of statistical skill scores for VIC-RAPID, and VIC-

IFC.  

Skill Score RAPID VIC-IFC 

%RMSE 

Max 20.09 13.10 

Mean 13.81 8.90 

Min 9.20 6.42 

SD 3.02 2.20 

NSE 

Max 0.59 0.78 

Mean 0.18 0.67 

Min -0.52 0.54 

SD 0.29 0.09 

Correlation Coeff. 

Max 0.81 0.90 

Mean 0.53 0.84 

Min 0.31 0.75 

SD 0.15 0.05 
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Table 2.3. Summary of  peak time differences (Δ T) in hours and percent difference in 

peak discharges (Δ Q%) for the mid-June (Event 1) and early-July (Event 2) peaks. 

Station  

Event1 Event2 

VIC-HLM VIC-RAPID VIC-HLM VIC-RAPID 

Δ T (hour) Δ Q% Δ T (hour) Δ Q% Δ T (hour) Δ Q% Δ T (hour) Δ Q% 

1 1 -17.5 -10 -47.9 12 -43.7 -6 54.6 

2 -6 -42.4 -46 -60.0 20 -2.2 34 146.4 

3 4 -27.2 -56 19.9 2 -5.1 10 259.1 

4 -73 -33.4 -100 48.4 -5 -35.4 -15 1.1 

5 -22 -6.8 -108 -15.0 -3 8.3 2 100.4 

6 0 -38.8 -31 -52.7 -16 -34.2 4 35.9 

7 -2 -36.5 -38 -52.8 -1 -19.1 4 89.3 

8 -72 -44.6 -89 12.5 0 -59.9 -12 -44.6 

9 -17 -36.6 -54 -48.0 -6 -34.8 -18 -15.5 

10 -6 -44.0 -21 50.4 -5 -40.0 -14 7.1 

11 -10 -32.8 -41 -40.6 8 -36.8 3 -28.2 

Max 4.0 -6.8 -10.0 50.4 20.0 8.3 34.0 259.1 

Mean -18.5 -32.8 -54.0 -16.9 0.5 -27.5 -0.7 55.0 

Min -73.0 -44.6 -108.0 -60.0 -16.0 -59.9 -18.0 -44.6 

SD 27.8 11.7 32.1 42.3 9.8 20.5 14.9 89.8 
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Figure 2.1. The Cedar River basin located in eastern Iowa. The USGS stream gauges 

located within the basin are represented by green dots. The labels of the USGS gauges 

correspond to the rankings in Table 2.1.. 
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Figure 2.2. Hydrographs at the USGS station locations: the red lines represents VIC-

HLM, the blue line represents VIC-RAPID, and the black lines are the observations. The 

numbers in the panel labels correspond to the station ranking in Table 2.1.. 
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Figure 2.3. A comparison of the statistical skill scores: top row is % RMSE, the middle 

row is the correlation, and the bottom row is the NSE, with VIC-RAPID on left column 

and VIC-HLM on the right column. 
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Figure 2.4. Comparison of HR left column, FAR middle column and CSI right column (y 

axes) at different stations (x axes) between NIFE-Hydro and IFC. The left and right 

columns represent the 2-year and 5-year return period flood peak thresholds respectively. 

Blue bars represent the VIC-RAPID scores and red bars represent VIC-HLM scores. 

Station numbers (x-axis) follow Table 2.1. ranks. 
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CHAPTER 3: A Spatio-Temporal Evaluation of IMERG 

Final Run and its Performance in Stream Flow Modeling over 

the State of Iowa 

3.1. Introduction 

In February 2014, NASA launched the Global Precipitation Measurement (GPM) 

mission’s core satellite (Huffman et al., 2014). This core satellite is the successor of the 

retired Tropical Rainfall Measurement Mission (TRMM) core satellite which along a 

constellation of geostationary and Low Earth Orbiting (LEO) satellites has provided the 

TRMM Multi-satellite Precipitation Analysis (TMPA, references) rainfall estimates. The 

TMPA products were widely used and analyzed in many hydro-meteorological 

applications over the past three decades (Habib et al., 2012; Haile et al., 2013; Quintero 

et al., 2016). The GPM mission provides a verity of improved precipitation products that 

are obtained from different sensors (e.g., Microwave (MW) or Infrared (IR) sensors) and 

have different latencies (e.g., near real time or research version). In this chapter, we are 

interested in the recommended research version called IMERG Final Run V04A, which 

was released in April 2017. The product comprises of a combination of precipitation 

estimates that are obtained from satellite that are bias adjusted using rain gauges. The 

improved features of IMERG include larger spatial coverage, higher spatial and temporal 

resolution, and better snow detection in comparison to the TMPA products (Huffman et 

al., 2014). In many parts of the world, satellite rainfall products are the only available 

source of spatial rainfall estimates. Therefore, information regarding the accuracy of 

IMERG are useful for researchers who need to use it in hydro-meteorlogical applications 

such as land surface modeling, and flood prediction. 
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In this chapter, we use the Multi-Radar/ Multi-sensor (MRMS) Quantitative 

Precipitation Estimate (QPE) as our benchmark product to evaluate IMERG. Although 

we acknowledge that our benchmark product is not a perfect measure of real rainfall, it is 

safe to assume that it is a closer measure of it compared to satellite rainfall (Vergara et 

al., 2014). In addition, radar rainfall estimates can provide us with a continental scale 

continuous coverage and high temporal resolution that rain gauge networks cannot 

provide. In this study we use the latest operational version of MRMS, which is available 

starting from September 2015 (Zhang et al., 2015). 

Our study domain is the entire state of Iowa, which is located in the US Midwest 

with a total area of 145,740 Km2. The state spans between the longitudes of around -

96.6˚ W to -90.0˚ W and latitudes 40.0˚ N to 43.6˚ N (Figure 3.1.).  In this study, we 

conduct a direct comparison between the time series of rainfall estimates at each location 

(rainfall pixel) within our domain, as well as characterizing the dependency of the rainfall 

estimates obtained from each product in space and time. We do so by estimating the 

spatiotemporal semi-variogram of the rainfall values. Naturally, rainfall estimates are 

correlated in space and time with magnitudes that depend on the coverage and duration of 

the storm which they are associated with. However, during the production of IMERG, the 

more reliable, but not always available, rainfall estimates from MW satellites are 

interpolated in space and time to fill the gaps that occur during the times when there is no 

satellite coverage. This is expected to alter the structure of the dependency between 

IMERG’s rainfall estimates and affect the discrepancies between IMERG and MRMS. 

Vergara et al., (2014) showed that the differences in the spatial dependency between 
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rainfall estimates can be related to discrepancies in the discharges produced by 

hydrologic models. 

In addition to our rainfall to rainfall comparison, we separately investigate the 

performance of both rainfall products in stream flow estimation. For this purpose, we 

used both rainfall products as the inputs of two hydrologic models. The hydrologic 

models are the Iowa Flood Center’s (IFC) in-house hydrologic model called the 

Hillslope-Link Model (HLM) (Krajewski et al., 2016), and the hydrologic model 

presented in (ElSaadani and Krajewski, 2017) which comprises of the Noah Multi-

Parameter (MP) Land Surface Model (LSM) and the routing component of the HLM. We 

conducted state wide hydrologic model runs and evaluated the model outputs at 130 

United States Geological Survey (USGS) stream gauge locations that are within our 

domain and are not directly affected by artificial storage (e.g., damns or reservoirs). Both 

our rainfall and streamflow comparisons were conducted over the 2016 warm season 

(June, July, August and September).                     

3.2. Datasets and models 

3.2.1. Rainfall products 

The product we are going to evaluate in this study is the Integrated Multi-satellitE 

Retrievals for GPM (IMERG) is a satellite based, high resolution, global precipitation 

product. Precipitation estimates for IMERG are obtained through interpolating and 

merging precipitation estimates from satellite microwave estimates, infrared (IR) satellite 

estimates, and rain gauge precipitation estimates. The spatial and temporal resolutions of 

IMERG are (0.1˚) and (30 minutes) respectively, with global coverage from 60˚ N to 60˚ 

S and 180˚ E to 180˚ W. The most reliable data for IMERG are those obtained from the 
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GPM core observatory and the Passive Microwave (PMW) LEO satellites. The gaps 

between the observations from these satellites are filled by morphing, using geo-IR-based 

feature motion and microwave calibrated IR estimates; where the GPM core observatory 

serves as a calibration and evaluation tool for all other satellite products (IR and PMW) 

used in IMERG. The IMERG Final Run product undergoes bias correction using rain 

gauge rainfall estimates provided by the Global Precipitation Climatology Centre 

(GPCC) (Liu, 2016). 

 What separates the GPM mission from its predecessor TRMM is that, first, the 

orbit of the GPM core satellite is between 65˚ N and 65˚ S, which allows the satellite to 

observe a wider range of climate zones. Nevertheless, the high inclination of the orbit 

reduces the DPR’s sampling compared to the less inclined TRMM orbit. Second, the 

Dual-Frequency Precipitation Radar (DPR) on board of the satellite has two active 

microwave channels. The Ku-band (13.6GHz) which is similar to the one available in 

TRMM core satellite and is good for detecting large size rain drops, and the higher 

frequency Ka-band (35.5 GHz) channel, which allows the satellite to detect snow and 

smaller rain drop sizes. In addition to the GPM’s improved instruments, a combination of 

satellite rainfall algorithms are merged to produce IMERG. This includes the algorithms 

used to produce TMPA together with the Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks (PERSIANN, Ashouri et al., 2015) and the 

Climate Prediction Center (CPC) MORPHing technique (CMORPH, Woody et al., 2014).  

Our benchmark product (ground reference) in this study is the Multi-Radar/Multi-

Sensor (MRMS) Quantitative Precipitation Estimate (QPE), which was first built by the 

National Severe Storm Laboratory (NSSL), and now is being operationally produced by 



www.manaraa.com

35  
 

the National Center for Environmental Prediction (NCEP). The ground based radar 

product is bias adjusted using hourly quality controlled rain gauge data provided by the 

Hydro-meteorological Automated Data System (HADS, Zhang et al., 2015). The product 

integrates observations from 180 operational radars (Zhang et al., 2015) and has a high 

spatial resolution of 0.01˚ and hourly temporal resolution. The product covers the 

conterminous United States (CONUS) domain and southern Canada (20˚ N – 50˚ N). 

3.2.2. Atmospheric frocings 

The data input requirements for the hydrologic models can be different based on 

the user’s needs. For instance, the IFC model can use remotely-sensed or climatology-

based evapotranspiration (ET) estimates. Also, users can implement their own ET module 

by adding the governing ET equations in ODE format to the model script. We used the 

climatology option based on 12 years of North American Land Data Assimilation System 

(Mitchell et al., 2004) for the IFC model. We chose the climatology-based ET due to its 

simplicity. Although this approach successfully represents the seasonal variability of ET, 

it does not capture the daily fluctuations nor the inter-annual variability of ET. 

Researchers at the IFC are currently working on producing a more sound ET estimation 

methodology for the IFC model; this will be the subject of future studies (Krajewski et 

al., 2016). 

A major component in our second hydrologic model used in this study (ElSaadani 

and Krajewski, 2017) is the Noah-MP LSM. Noah-MP requires atmospheric forcing data 

that can be obtained either from the Weather Research and Forecasting (WRF) model, or 

retrospective atmospheric forcings such as those provided by the NASA Phase 2 North 

American Land Data Assimilation (NLDAS-2) dataset (Xia et al. 2012a, b). In this study, 
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we chose the latter option. All NLDAS-2 variables are available on the NLDAS-2 1/8˚ 

square grid with hourly temporal resolution. Except for precipitation, surface forcing 

fields (e.g. surface radiation fluxes, temperature, wind speed, humidity, and pressure) 

from the NLDAS-2 dataset are used to force the LSM.  

3.3. Hydrologic models  

3.3.1. The Hillslope Link Model (HLM)  

HLM is a parsimonious model that decomposes the landscape into fine resolution 

hillslopes with an average area of 0.4 km2. For each hillslope, the mass conservation 

equations are translated into a set of ordinary differential equations and solved via a 

parallelized numerical solver (Small et al., 2013). This platform is flexible and allows the 

user to decide which processes should be included in the rainfall runoff, and runoff 

discharge generation and their level of complexity (complex or simple approximate 

equation). It also allows for the use of remotely-sensed data, retrospective data, or user-

defined climatology estimates as a substitute for some of these processes e.g. ET 

estimates. The configuration we used for this study has three main storages in each 

control volume: hillslope surface 𝑆𝑠𝑢𝑟𝑓, top soil 𝑆𝑡𝑜𝑝𝑠, and deep soil 𝑆𝑑𝑒𝑒𝑝𝑠. The 

governing equations for the IFC model are described in Quintero et al., 2016 and Mantilla 

2007.  

3.3.2. Noah-MP LSM with HLM routing 

The Noah-MP LSM is a one-dimensional column-based community land surface 

model that decomposes the landscape into a user-defined regular square grid (3 km in this 

study).  The LSM accounts for a large number of complex natural processes that 

contribute to the energy and mass balance between the soil and the atmosphere, such as 
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vegetation growth, soil moisture, snow cover, incoming short- and long-wave radiation, 

and the water exchange between different soil layers.  Niu et al., (2011) describes the 

Noah-MP model in detail. We defined the Noah-MP LSM’s grid characteristics using the 

USGS National Elevation Dataset, the USGS 24-category land-use data, and the U.S. 

Department of Agriculture Natural Resources Conservation Service State Soil 

Geographic (STATSGO) data. The runoff estimates from the LSM are then routed using 

the HLM routing component described in the previous section in order to obtain stream 

discharges.   

3.4. Results 

3.4.1. Rainfall to rainfall comparisons 

We begin our comparison by visually inspecting the mean hourly rainfall 

estimates of each product. Figure 3.2. shows the mean hourly rainfall estimates of MRMS 

during the months of June (top left), July (top right), August (bottom left), and September 

(bottom right) of 2016. Figure 3.3. shows the same estimates but for IMERG. One can 

see that IMERG underestimated the rainfall amounts, with a smoother and more spread 

rainfall domains. This is especially true for strong, clustered accumulations. The 

underestimation of strong events is reflected in the RMSE estimates in Figure 3.4. 

especially during the August and September of 2016. 

In Table 3.1., we show the HR, FAR, CSI, and Bias of IMERG for various 

rainfall thresholds. The bias values show that IMERG has overestimated the number of 

hours with small amounts of rainfall (0-1 mm/hr). In addition, IMERG have significantly 

underestimated the number of rain instances with high rainfall values. The HR estimates 

point in the same direction as the bias where IMERG failed to detect instances with high 
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rainfall estimates while performed much better for low rainfall estimates. The FAR 

shows that even the instances during which IMERG detected large rainfall amounts were 

false alarms. In addition, IMERG has detected a fair amount of false low intensity 

rainfall. The CSI shows that overall, IMERG performs much better during light rainfall 

events than it does during heavy rainfall events. 

We further investigate the spatial and temporal structure of the rainfall estimates 

from both products by calculating the empirical semi-variogram of rainfall. The two 

semi-variogram characteristics that we are interested in the most are their range and 

nugget. This is because we would like to relate the mean hourly rainfall distributions we 

observed in Figures 3.2. and 3.3., as well as the bias in heavy rainfall detection shown in 

Table 3.1., with the semi-variograms. For example, one should expect strong wide spread 

systems (e.g., tropical storms) to have larger range values while small concentrated 

rainfall systems (e.g., convective storms) to have a smaller range. In addition, wide 

spread and more uniform systems should have smaller nugget effect and less overall 

variance. However, if there is a group of small concentrated systems, for example, the 

nugget effect should be strong due to the abrupt changes in rainfall in space and in time 

and the overall variance should be higher as well. Since we are analyzing monthly 

rainfall, one should expect a combination of different storm types to occur, resulting in a 

mixed effect on the semi-variogram characteristics.  

In Figure 3.5., we show the spatio-temporal semi-variogram of hourly rainfall for 

MRMS during June (top left), July (top right), August (bottom left), Spetember (bottom 

right). The x-axis represent the distance between the rainfall estimates in Km, while the 

y-axis represents the semi-variance in mm2. Each line with a different color correspond 
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to a certain time lag (between 1h to 10h). As expected, the semi-variograms directly 

relate to the observed mean hourly rainfall maps. During the June, most of the rainfall is 

concentrated on the top right corner of the state of Iowa and the overall maximum mean 

rainfall is less, compared to August and September. This is reflected in the semi-

variogram as smaller range of around 100 Km (due to concentrated rainfall) and less over 

all variance compared to other months. In addition, the nugget to sill ratio is about 30% 

which is considerably higher than other months. For the month of July, the maximum 

mean hourly rainfall is higher than that of June but still relatively lower than August and 

September. In addition, July rainfall covers most of the state. This resulted in a sill that is 

relatively higher than that of June and a smaller nugget (around 20% of the sill value). 

One can also see that the more spread rainfall resulted in a range that is twice as large as 

the one from June. Similar behaviors are seen in the August and September semi-

variograms, except with a stronger nugget due to the availability of some scattered strong 

systems.  

Time wise, one can see that the semi-variance collapses in time quickly. During 

the month of June, where no strong events occurred, the semi-variance collapsed 

immediately at the first time lag (1 hour). However, for the other months the semi-

variance of the first time lag is considerably larger and the semi-variance after the second 

time lag is negligible. 

The same inter-monthly difference in characteristics of the semi-variograms of 

MRMS rainfall are observed in IMERG semi-variograms (Figure 3.6.). However, the 

semi-variogram ranges are considerably larger to their MRMS counterparts (all above 

200 Km) with a much weaker nugget effect. In addition, the dependence in time is much 
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higher compared to MRMS with a span up to four hours (e.g., August). This higher auto-

correlation in space and time can be due to the interpolation techniques used to generate 

IMERG and will in turn affect the structure of the discrepancies between IMERG and the 

benchmark rainfall MRMS. Ideally, the rainfall errors should be uncorrelated (random 

errors). However, the semi-variograms of the errors (Figure 3.7.) show otherwise. The 

rainfall errors of IMERG are correlated up to ranges of around 100 Km but the 

dependence in time collapses almost immediately at the first time lag. 

3.4.2. Streamflow comparisons 

We performed state wide hydrologic model runs for the 2016 wet season using 

the HLM and Noah-MP with HLM routing. We allowed a proper initialization period for 

both models and calculated all our statistics for the period between June through 

September, 2016. We compared the models’ outputs to the observed stream flows from 

130 USGS stream gauges across the state of Iowa. Gauge selection was based on record 

availability and minimal storage effect (e.g., dams or reservoirs). 

In Figure 3.8. we show the correlation coefficient between the modeled and 

observed discarges. In general, the HLM model outperformed the Noah-MP with HLM 

routing. In addition, the MRMS product performed better than IMERG as a model input. 

The model selection seems to have a stronger impact on the quality of model inputs in 

comparison to the model rainfall input in our case. However, the spatial distribution of 

the performance of both models is similar. Both models performed much better in the 

eastern side of the state than they did in the western part of the state. This spatial change 

in performance can be attributed to the steeper topology of the western side of the state as 

well as the difference in the rainfall input quality. Similar patterns in the spatial 
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distribution of the performance is seen in the NSE (Figure 3.9.), and the percent 

normalized RMSE (Figure 3.10.).          

3.5. Summary and conclusions  

In this chapter, we investigated the performance of the satellite based rainfall 

product IMERG. The product showed an adequate performance in terms of representing 

the spatial and temporal occurrence of rainfall events. However, the magnitude and 

dependency between the rainfall estimates is different from our benchmark product 

MRMS. IMERG provided a reliable characterization of the monthly variability in hourly 

rainfall rates and rainfall distribution during our study period. However, there is an 

overall underestimation of the rainfall magnitudes and the product was not able to capture 

heavy concentrated events. In addition, IMERG showed a fair amount of false light 

rainfall detection due to the overestimation of the geographic extent over which rainfall 

occurred. This smoothing in space is clear in the empirical semi-variogram of rainfall 

estimates in the form of large range (almost twice as large as the ranges of MRMS) and 

small nugget effect. In addition, the temporal semi-variograms showed that IMERG 

rainfall estimates have relatively higher dependency in time (up to 4 hours) compared to 

the benchmark product where the dependency in time usually collapses after the first time 

lag.  

IMERG showed an overall adequate performance in hydrologic modeling. The 

performance metrics obtained when IMERG is used as a rainfall input to hydrologic 

models were comparable to those obtained from MRMS. Generally, both hydrologic 

models produced better discharge estimates in the eastern side of our study area with the 

HLM model outperforming the Noah-MP with HLM routing combination. 
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Table 3.1.  Contingency table for IMERG for each 

month. 

Threshold 
(mm/hr) 

0.1 1 5 10 20 30 40 50 

HR Jun 0.7 0.6 0.4 0.3 0.1 0.0 0.0 0.0 

Jul 0.6 0.6 0.5 0.4 0.1 0.0 0.0 0.0 

Aug 0.6 0.5 0.5 0.4 0.2 0.0 0.0 0.0 

Sep 0.7 0.6 0.5 0.3 0.1 0.0 0.0 0.0 

FAR Jun 0.5 0.5 0.7 0.8 0.9 1.0 1.0 1.0 

Jul 0.4 0.3 0.5 0.7 0.9 1.0 1.0 1.0 

Aug 0.4 0.4 0.6 0.7 0.8 0.9 0.9 1.0 

Sep 0.4 0.4 0.6 0.7 0.9 1.0 1.0 1.0 

CSI Jun 0.4 0.4 0.2 0.1 0.0 0.0 0.0 0.0 

Jul 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 

Aug 0.4 0.4 0.3 0.2 0.1 0.0 0.0 0.0 

Sep 0.5 0.4 0.3 0.2 0.0 0.0 0.0 0.0 

BIAS Jun 1.3 1.1 1.3 1.2 0.5 0.3 0.1 0.1 

Jul 1.0 0.8 1.1 1.2 0.8 0.4 0.2 0.1 

Aug 1.1 0.9 1.1 1.2 0.9 0.4 0.1 0.0 

Sep 1.1 0.9 1.2 1.2 0.6 0.1 0.0 0.0 
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Figure 3.1. A map showing the study area (state of Iowa). The green points represent the 

USGS gauge locations used in the study (130 gauges).  
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Figure 3.2. MRMS mean hourly rainfall estimates in millimeter for June (top left), July 

(top right), August (bottom left), and September (bottom right). 
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Figure 3.3. IMERG mean hourly in millimeter rainfall estimates for June (top left), July 

(top right), August (bottom left), and September (bottom right). 
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Figure 3.4. RMSE of rainfall discrepancies for June (top left), July (top right), August 

(bottom left), and September (bottom right). 
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Figure 3.5. Monthly spati-otemporal semi-variograms of hourly MRMS rainfall. The top 

left panel represents the semi-variance of June, top right panel is for the month of July, 

bottom left is August, and bottom right is September. The temporal variograms are 

calculated for 10 lag times (colorbar on the right). 
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Figure 3.6. Monthly spati-otemporal semi-variograms of hourly IMERG rainfall. The top 

left panel represents the semi-variance of June, top right panel is for the month of July, 

bottom left is August, and bottom right is September. The temporal variograms are 

calculated for 10 lag times (colorbar on the right). 
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Figure 3.7. Monthly spati-otemporal semi-variograms of hourly rainfall errors. The top left 

panel represents the semi-variance of June, top right panel is for the month of July, bottom 

left is August, and bottom right is September. The temporal variograms are calculated for 

10 lag times (colorbar on the right). 
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Figure 3.8. Correlation coefficient between modeled and simulated discharges. Top row is 

for the HLM model and bottom row is for the Noah-MP with HLM routing. Left column 

represents simulations with MRMS as an input while right column is for IMERG as model 

input. 
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Figure 3.9. NSE between modeled and simulated discharges. Top row is for the HLM 

model and bottom row is for the Noah-MP with HLM routing. Left column represents 

simulations with MRMS as an input while right column is for IMERG as model input. 
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Figure 3.10. normalized RMSE% between modeled and simulated discharges. Top row is 

for the HLM model and bottom row is for the Noah-MP with HLM routing. Left column 

represents simulations with MRMS as an input while right column is for IMERG as model 

input. 
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CHAPTER 4: River Network Based Characterization of 

Errors in Remotely Sensed Rainfall Products in Hydrological 

Applications 

4.1. Introduction  

Many studies have aimed to evaluate or enhance the performance of satellite 

rainfall products in hydrologic applications (e.g., Gourley et al., 2011; Vergara et al., 

2014; Habib et al., 2014).  A few studies have modeled the spatial dependence of the 

rainfall errors from different sensors but limited the considerations to the Euclidean space 

(e.g., Vergara et al., 2014; Mandapaka et al., 2009).  This Euclidian based 

characterization is suitable for many applications such as runoff generation, 

evapotranspiration (ET), or soil moisture content estimation since these variables are 

continuous in Euclidean space.  However, variables such as stream discharge are 

confined by the stream network, which is dichotomous in nature and a fractal (e.g. 

Rodriguez-Iturbe and Rinaldo, 1997). 

In this chapter, we present an example of river network based characterization of 

uncertainties in remote sensing rainfall products.  River networks act as low pass filters 

on highly variable rainfall and its estimates, but their averaging properties are different 

from those of Euclidean domains.  Our application is limited to rainfall only but similar 

considerations, with substantially more difficulties, apply to the transformed variables of 

runoff and streamflow and their characteristics such as peak and low flows.  We 

characterize spatial dependence of rainfall errors using the tools of geostatistics, namely 

the semi-variogram (e.g. Cressie, 1993). 

The method we use is described by Ver Hoef et al., (2006) and called the Spatial 

Stream Network (SSN).  SSN accounts for the nested nature of the stream network by 
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using stream distances and site connectivity information.  The stream distances are 

separated into two categories: first, flow-connected distances between sites, i.e. discharge 

flows directly from the upstream site location to the downstream site location; second, 

flow-unconnected distances between sites that are only connected through a common 

downstream junction in the stream network, i.e. discharge cannot flow from one site to 

another but rather from each site to the nearest connecting downstream junction.  As a 

result, the complete semi-variogram produced from this analysis consists of two (or 

more) distinct semi-variograms called the Torgegram when combined (Zimmerman and 

Ver Hoef, 2016).  In addition, Ver Hoef et al., (2006) developed theoretical spatial 

covariance models valid for stream networks. 

The SSN method has received little to no attention in hydrologic modelling 

studies but we find it highly relevant for applications where river networks play a 

dominant role.  In this study, our main goal is to explore the characteristics of the 

Torgegram when it is applied to satellite rainfall errors that are accumulated through the 

stream network.  A secondary goal is to test an application of the Torgegram for spatial 

prediction.  We fit multiple generalized spatial linear models to the satellite rainfall errors 

using both Euclidean and stream network based covariance functions, and then evaluate 

and compare their performance using methods such as the Akaike information criteria 

(AIC, Akaike 1973) and the Leave-One-Out Cross-Validation (LOOCV) test. 

4.2. Methods 

A good tool to estimate and visualize spatial dependence is the semi-variance.  

For two sites that are h distance apart, the semi-variance is described as follows, 

𝛾(ℎ) =
1

𝑁(ℎ)
∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑗)]

2
,‖𝑥𝑖−𝑥𝑗‖∈𝑐(ℎ)   (4.1) 
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where 𝑐(ℎ) is a distance bin for data locations approximately distance ℎ apart; 

𝛾(ℎ) is the semi-variance for sites located inside the distance bin, 𝑧(𝑥𝑖) and 𝑧(𝑥𝑗) are the 

observed values at sites 𝑥𝑖 and 𝑥𝑗 respectively, and 𝑁(ℎ) is the number of site couples 

that are inside the distance bin.  The result of plotting the semi-variance against distance 

h is called the semi-variogram.  Traditionally, h is measured using Euclidean distance 

between the observation sites.  However, for our stream network application, it is better 

to characterize the semi-variance in terms of stream distance rather than Euclidean 

distance.  In addition, because some variables are impacted by the flow connectivity 

structure of the stream network (e.g., there is no water transport between unconnected 

locations as well as in the upstream direction), it is important to separate the measured 

distances into two categories.  First, distances between flow-connected sites (e.g., the 

water flows directly from the upstream site location to the downstream site location) are 

equal to the length of the stream segments connecting the two sites.  Second, distances 

between flow-unconnected sites are equal to the sum of the lengths of the two stream 

segments that connect each site to the nearest downstream connecting junction (e.g., 

Figures 4.5. and 4.6.).  Because of this distance categorization, we obtain two semi-

variograms that when plotted simultaneously are called the Torgegram.  If the spatial 

dependence of the variable of interest is not impacted by network connectivity, the flow-

connected and flow-unconnected portions of the Torgegram should be similar; otherwise, 

they could be quite different. 

The semi-variogram and the corresponding spatial covariance function are often 

characterized by three parameters: sill (maximum semi-variance), range (the distance 

where the sill is reached), and nugget (abrupt change in semi-variance at the origin), see 
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for example Cressie, (1993).  The covariance function can take many forms (e.g., 

exponential, spherical, Gaussian) as long as it satisfies certain conditions to insure 

positive definiteness (Ver Hoef et al., 2006). It is important to note that simply 

substituting Euclidean distance by stream distance does not guarantee the validity 

(positive definiteness) of the statistical model (Ver Hoef et al., 2006; Ver Hoef and 

Peterson 2010). Ver Hoef et al., (2006); Ver Hoef and Peterson (2010) and Zimmerman 

and Ver Hoef (2016) present groups of valid statistical covariance models for stream 

networks.  

The SSN models are based on Moving Average (MA) constructions (Ver Hoef et 

al. 2006). The derivation of the models is beyond the scope of this chapter. However, we 

briefly summarize how the models are obtained. The MA construction is created by 

considering a random variable to be equal to the integral of a MA function over a white 

noise process on the stream network. The MA function is only non-zero in one direction, 

either upstream or downstream. The value of the moving average function is largest at the 

observation site and decreases as one moves away from the site location. The smaller the 

separation distance between two sites, the greater the extent of overlap of those portions 

of the MA functions that are relatively large. This in turn will result in higher covariance. 

Covariance models for which the corresponding MA function is only positive in 

the upstream direction are called tail-up models and they allow only flow-connected sites 

to be correlated. The covariance function for the tail-up models takes the following form, 

𝑪𝒕𝒖(𝑠𝑖, 𝑡𝑗|{𝜋𝑖 𝑗}, 𝜃) = {
𝜋𝑖 𝑗𝑪𝒖𝒘(𝑠  − 𝑡 |𝜽),   𝑤ℎ𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑓𝑙𝑜𝑤 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 
0,   𝑤ℎ𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑓𝑙𝑜𝑤 − 𝑢𝑛𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

, (4.2) 
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where 𝑪𝒕𝒖() is the tail-up stream covariance function, while 𝑪𝒖𝒘() is an unweighted 

covariance function valid on the real line. Here, 𝑠𝑖 denotes a site located on the ith stream 

segment, a stream distance s upstream from the most downstream point on the network; 

𝑡𝑗 is defined similarly. The variables 𝜋𝑖 𝑗 are weights used to split the covariance function 

at upstream junctions’ locations. Streams with larger served areas obtain larger weights 

and vice versa. Since there is no overlap between the MA functions of flow-unconnected 

sites, their covariance is equal to zero. On the other hand, the covariance function for the 

tail-down models takes the following form, 

𝑪𝒕𝒅(𝑠𝑖, 𝑡𝑗| 𝜃) =

{
𝑪𝒇 𝒄(𝑠 −  𝑡|𝜃), 𝑤ℎ𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑓𝑙𝑜𝑤 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑,

 
𝑪𝒇 𝒖(𝑠 −  𝑞𝑖 𝑗, 𝑡 −  𝑞𝑖 𝑗|𝜃), 𝑤ℎ𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑓𝑙𝑜𝑤 − 𝑢𝑛𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

, (4.3) 

where 𝑪𝒕𝒅() is the tail-down stream covariance function, 𝑪𝒇𝒄() is the covariance function 

between flow-connected sites, and 𝑪𝒇𝒖() is the covariance function between flow-

unconnected sites. In the flow-unconnected case the distances are measured from each 

site to the nearest downstream connecting junction 𝑞𝑖 𝑗 to sites 𝑠𝑖 and 𝑡𝑗. 𝑪𝒇𝒄() and 𝑪𝒇𝒖() 

must be valid Euclidean covariance function of one and two variables, respectively, and 

are related to each other through their functional dependence on the same MA function. 

One problem with the tail-down models, although useful for considering 

covariance between flow-unconnected sites, is that they assign the same, or an even 

larger, covariance value between flow-unconnected sites as they do between flow-

connected sites with equivalent separation distance. This is not appropriate for many 

hydrologic variables since observations at flow-connected sites are usually more 

correlated than those at flow-unconnected sites that are separated by equivalent distances. 
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Thus, as described in Ver Hoef et al. (2006), it is useful to construct a mixed spatial linear 

model that incorporates the covariance generated by a linear combination of some or all 

models (e.g., tail-up, tail-down, and Euclidean) and to consider the variance of the errors 

to be as follows, 

𝑣𝑎𝑟(𝜺) = 𝜮 =  𝝈𝒕𝒖
2 𝑹𝒕𝒖 +  𝝈𝒕𝒅

2 𝑹𝒕𝒅 +  𝝈𝑬
2 𝑹𝑬 +  𝝈𝒏𝒖

2
 𝐈, (4.4) 

where 𝝈𝒕𝒖, 𝝈𝒕𝒅, 𝝈𝑬 are the standard deviations of the errors obtained from the tail-up, tail-

down, and Euclidean models respectively;  and 𝑹𝒕𝒖, 𝑹𝒕𝒅, 𝑹𝑬 are the correlation matrices 

of the tail-up, tail-down, and Euclidean models, respectively.  The final term is the variance 

of the nugget effect 𝜎𝑛𝑢
2 multiplied by the identity matrix I.   

4.3. Rainfall products and study area 

In this study, we characterize spatial uncertainties of the satellite rainfall product 

Integrated Multisatellite Retrievals for GPM (IMERG) Final Run (Huffman et al., 2014).  

IMERG combines rainfall estimates from Microwave (MW) sensors on board the Global 

Precipitation Measurement’s (GPM) satellite constellation as well as estimates from 

Infrared (IR) sensors on board geostationary satellites (Hou et al., 2015).  The IMERG 

product undergoes bias correction using the monthly rain gauge estimates provided by the 

Global Precipitation Climatology Centre (GPCC).  The product has a half-hourly 

temporal resolution and is available on a 0.1˚ square grid with a global coverage between 

60˚ N and 60 S˚ (Liu 2016).  Our benchmark (reference) product in this study is the 

Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimate (QPE).  This 

product uses data from the Weather Surveillance Radar-1988 (WSR-88D) and is 

corrected using rain gauge data provided by the Hydrometeorological Automated Data 
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System (HADS) (Zhang et al., 2015).  The product is available on a 0.01˚ square grid and 

at hourly temporal resolution. 

Our study area is a mid-sized Cedar River basin in eastern Iowa, USA with an 

overall drainage area of approximately 17,000 Km2.  The shape of the basin and the 

width function of the river network are illustrated in Figure 4.1. (a) and (b).  The width 

function could be interpreted as a distribution of distances from the outlet.  From Figure 

4.1. (b) it is evident that the majority of the pathways to the outlet have length between 

150 and 300 km.  The basin experienced a heavy rainfall event in September 2016, which 

resulted in the second highest river water level in history on September 27, 2016 (22 feet, 

https://www.weather.gov/dvn/summary_09272016).  We use this event as our test case 

for the evaluation.  We use the digitized stream network provided by the National 

Hydrography Dataset Plus Version 2 (NHDPlus V2, http://www.horizon-

systems.com/nhdplus/documentation.php) to obtain the necessary stream network 

information (e.g., stream distance, and stream served area).  Other necessary information 

(e.g., connectivity, upstream distance from the basin outlet, and tail-up covariance 

function weights) is obtained using the STARS and SSN software packages described in 

Peterson and Ver Hoef (2014).  

In Figure 4.2., we show the rainfall accumulations during the flood event period 

(September 14 through September 27, 2016) obtained from MRMS (a), IMERG (b). The 

differences between IMERG and MRMS as a percentage of the benchmark MRMS 

observed rainfall, expressed as, 

% 𝐸𝑟𝑟𝑜𝑟 =
𝐼𝑀𝐸𝑅𝐺−𝑀𝑅𝑀𝑆

𝑀𝑅𝑀𝑆
∗ 100, (4.5) 

https://www.weather.gov/dvn/summary_09272016
http://www.horizon-systems.com/nhdplus/documentation.php
http://www.horizon-systems.com/nhdplus/documentation.php
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are shown in Figure 4.2. (c). One can see how the satellite product generally over-

estimated rainfall on the eastern side of the basin while missing a dense cluster of 

accumulation in the top half of the basin. 

We then apply the approach described in Quintero et al., (2016) and Cunha et al., 

(2015) to compare our rainfall products.  We convert gridded rainfall products to a more 

hydrologically relevant representation by accumulating the rainfall for all size basins.  

Normalized by the drainage area, rainfall is assigned to the river network link that drains 

that area.  We then subtract the evaluated product from the corresponding reference 

product thus obtaining a river network representation of the rainfall differences (errors). 

Figure 4.3. shows the results of this procedure. Strictly speaking, the reference product is 

also subject to estimation uncertainty (e.g. Villarini and Krajewski 2007) but we ignore it 

here for the sake of simplicity of our illustration.  Radar-rainfall estimation uncertainty is 

considerably smaller than that of satellite products.    

An important feature of Figure 4.3. is how the magnitude of errors in rainfall 

estimates accumulates downstream (i.e., the errors in lower stream orders (small streams) 

are much higher than the errors in high order streams).  This variability in performance 

across scales indicates that as the basin size increases, the difference in the overall 

performance between the benchmark product and satellite rainfall decreases.  This in turn 

could have implications for the performance of the hydrologic models in terms of 

estimated stream discharges when IMERG is used as the rainfall input (i.e. better 

hydrologic models’ performance at larger scales; Quintero et al., 2016).  We use the 

difference values between IMERG and MRMS at approximately two thousand sites 



www.manaraa.com

61  
 

located near the network confluences (Figure 4.1.) over the whole basin to perform our 

evaluation (e.g., to produce the Torgegrams and covariance models). 

4.4. Results 

We begin our analysis by investigating the semi-variance of the rainfall 

differences using the traditional Euclidean space semi-variogram in multiple directions 

where 0˚ is the North-South direction and 90˚ is the East-West direction (Figure 4.4.).  In 

Figure 4.4. the diameter of the semi-variance circles is proportional to the number of 

observations that fall in a given distance bin.  One can see that the directions with highest 

number of observations for longer distances are the 135˚ and the 0˚ directions because of 

the basin’s shape and orientation.  One can also see that the sill was reached at distance of 

around 55 Km for the 90˚ and 135˚ directions, and at around 30 Km for the 0˚ and 45˚ 

directions indicating little to no autocorrelation beyond these distances.    

In Figure 4.5., we show the Torgegram of rainfall differences, where the green 

points are the semi-variances obtained from flow-unconnected sites, while the blue points 

are obtained from flow-connected sites.  It is important to note that the distance used here 

is the stream distance, which should be generally greater than Euclidean distance due to 

the meandering nature of rivers and streams.  This is illustrated in the right side of the 

figure where the distance between two flow-connected sites is represented by a solid line 

and the distance between two flow-unconnected sites is represented by a dashed line.  In 

addition, the maximum stream connected distance should be close, but not exactly equal, 

to the maximum distance of the width function. As one would expect, the number of 

flow-unconnected sites at relatively larger distances is generally greater than the number 

of flow-connected sites.  In addition, the flow-unconnected semi-variances extend for 
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longer distances in comparison with flow-connected semi-variances.  The semi-variance 

between flow-unconnected sites is higher than the semi-variance of the connected sites at 

the same separation distance.  The flow-unconnected semi-variogram reaches the range at 

around 150 Km, while the flow-connected semi-varigram stops increasing at around 200 

Km.  This difference in ranges indicates that rainfall errors among flow-connected sites 

are autocorrelated for longer distances compared to flow-unconnected sites.  However, 

the flow unconnected semi-variogram experiences a large increase in semi-variance 

towards the end.  This also occurs in the Euclidean semi-variogram in the 0˚ and 90˚ 

directions where the semi-variance keeps increasing without bound.  In addition, one 

would expect that at very large distances the semi-variance for both flow-connected and 

flow-unconnected sites should be similar due to the absence of autocorrelation.  This 

suggests trend contamination in the data (Zimmerman and Ver Hoef 2016).  

To remove the underlying spatial trend, we begin with a visual inspection of the 

rainfall differences field.  It suggests that for this particular storm, IMERG systematically 

overestimated the rainfall amounts on the eastern side of the basin while underestimating 

on the western side of the basin, thus causing differences in the mean value at different 

locations within the basin.  In addition, the amount of accumulated rainfall error 

systematically decreases as the stream order increases.  Detailed instructions on how to 

deal with this effect are available in Zimmerman and Ver Hoef (2016).  Here, we follow 

their strategy and fit, by ordinary least squares, a linear model to the data using stream 

order, longitude, and latitude as regressors.  Afterwards, we reproduce the Torgegram 

using the residuals of this model (Figure 4.6.).  One can see that now the range of the 

flow-unconnected sites is similar to what it was for the raw data (around 125 Km) while 
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the monotonic increase of the flow-unconnected semi-variogram has disappeared.  In 

addition, the range of the flow-connected semi-variogram is significantly larger than that 

of the flow-unconnected semi-variogram (about twice as large).  This linear trend-

corrected Torgegram represents the hydrologically-relevant spatial dependence of 

satellite rainfall errors.  

Our next objective is to test the predictive ability of various models of the spatial 

dependence.  In our example, the errors are calculated and known at some 2000 locations 

but one may imagine a situation where error prediction in river space is needed.  

Therefore, the next step is fitting spatial statistical models to our data.  Given the nature 

of our variable, both tail-up and tail-down models should be important for error 

covariance modeling.  This is because some flow-unconnected streams (especially low 

order streams) receive the same amount of rainfall differences due to their proximity.  We 

compare the predictive performance of the stream network models with that of the 

Euclidean models. 

For our example spatial linear model, we use the benchmark rainfall, upstream 

distance, and served (drainage) area as predictors.  For the covariance of the errors, we 

produced linear models that leverage each of the tail-up, tail-down, and Euclidean 

covariance functions.  In addition, we produced two mixed models, one with tail-up and 

tail-down, and another that included tail-up, tail-down, and Euclidean covariance models.  

We used spherical covariance functions for all models.  Table 4.1. shows the comparison 

between all models.  We fit all models using ML to be able to compare their AIC scores.  

The mixed model with all covariance schemes outperformed all other models and 

received an AIC score of 8966. The next best model is the mixed model with tail-up and 
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tail-down alone with AIC score of 9095, i.e. only slightly worse.  All mixed models 

performed significantly better than the pure Euclidean model.  In addition, the pure tail-

up model performed worse; we expected this since the tail-up models allow nonzero 

correlation only between flow-connected sites, which is not a good representation of our 

variable (rainfall differences).  In addition to the AIC comparison, Table 4.1. contains 

Leave-One-Out Cross Validation test (LOOCV) results.  The Root Mean-Squared Error 

of the predicted values is in agreement with the AIC scores and shows that the mixed 

models outperformed the Euclidean model.  In Figure 4.7., we plot the comparison 

between the LOOCV prediction normalized by the prediction standard error versus the 

observations for the Euclidean, mixed tail-up and tail-down, and mixed all models from 

left to right respectively.  The prediction from both mixed models is better than that from 

the pure Euclidean model, while the difference in performance between the two mixed 

models is insignificant. 

4.5. Conclusions and future work 

The main goal of this study is to highlight the effect of the basin size and stream 

network configuration on the performance of the satellite rainfall product IMERG Final 

Run in hydrological modelling applications.  The process of aggregating rainfall 

estimates downstream in the network helps eliminate a large portion of the differences 

between IMERG’s rainfall estimates and the benchmark product MRMS.  Nevertheless, 

the remaining portion is correlated for much longer ranges within the stream network. 

Overall, stream based spatial statistical models resulted in better prediction when 

compared to the Euclidean distance models.  However, the choice of the covariance 

moving average function has a strong impact on determining the model’s performance.  



www.manaraa.com

65  
 

One should carefully choose a moving average function that is compatible with the nature 

of the variable being analyzed. 

This approach is also applicable to other hydrologic variables, in particular to 

those that result from rainfall transformation, i.e. runoff and streamflow.  Specifically, 

one could explore the nonlinear effects of system memory, via soil moisture, on the 

spatial dependence of errors in flood peaks.  Future work that builds on our present effort 

can include performing hydrologic model runs and analyzing the differences in 

discharges and other model variables (e.g., antecedent soil moisture) and relating them to 

the discrepancies in rainfall estimates. 
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Table 4.1. Spatial statistical models performance metrics including the AIC scores 

and Root Mean-Squared Prediction Error RMSPE. 

Covariance Model AIC RMSPE 

Up-Down-Euclid 8966.8 4.01 

Up-Down 9095.1 4.42 

Tail-Up 11314.6 13.3 

Tail-Down 10613 6.8 

Euclidean 10481 6.8 
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Figure 4.1. (a) The Cedar River basin located in eastern Iowa.  The Blue lines represent 

the NHDPlus V2 stream network definition (Flowlines), while the green points represents 

the sample sites located near the confluences of the network. (b) The width function of 

the basin showing the distance from the outlet in Km (x-axis) and the number of streams 

at a certain distance (y-axis). 
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Figure 4.2. Rainfall accumulations during the period of (September 14, 2016 through 

September 27, 2016) for MRMS (a) and IMERG (b). MRMS has been aggregated in 

space in order to be compared to IMERG. The normalized differences between the two 

products is shown as % difference in (c). 
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Figure 4.3. Rainfall accumulations during the period of (September 14, 2016 through 

September 27, 2016) for MRMS (a) and IMERG (b). Unlike Figure 2., each product was 

accumulated along the stream network. The normalized differences between network 

based accumulations of the two products is shown as % difference in (c). 
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Figure 4.4. The directional semi-variogram obtained from the rainfall differences in 

IMERG resolution. The direction 0˚ is the North-South while 90˚ is East-West. The size 

of the black circles is proportional to the number of sites that are fall into a given distance 

bin. The circle with the arrow at the bottom right of each panel shows the variogram 

direction. 
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Figure 4.5. The Torgegram obtained using the differences calculated along the stream 

network. The green circles represent the flow-unconnected sites while the blue circles 

represent the flow-connected sites. The sizes of the circles are proportional to the number 

of sites that fall into a certain distance bin. The schematic on the right side illustrates the 

difference between flow-connected (solid line) distances and flow-unconnected distances 

(dashed lines). 
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Figure 4.6. The Torgegram of the differences along the stream network after trend 

removal. The green circles represent the flow-unconnected sites while the blue circles 

represent the flow-connected sites. The sizes of the circles are proportional to the number 

of sites that fall into a certain distance bin. The schematic on the right side illustrates the 

difference between flow-connected (solid line) distances and flow-unconnected distances 

(dashed lines). 
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Figure 4.7. The LOOCV predictions (y-axis) plotted against the rainfall differences (x-

axis). The results are shown for the pure Euclidean model (a) and two mixed models; 

first, tail-up and tail-down (b), second, tail-up, tail-down, and Euclidean (c). 
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CHAPTER 5: A Time-based Framework for Evaluating 

Hydrologic Routing Methodologies Using Wavelet Transform 

5.1. Introduction 

Distributed hydrologic models usually consist of two major components that 

together produce stream discharge estimates. The first component is a Land Surface 

Model (LSM) that decomposes the terrain into a regular (e.g. rectangular or triangular) or 

irregular (e.g. terrain-fit polygons outlining hillslopes) grid where the energy and mass 

exchange between the land and the atmosphere are modeled. This process produces 

estimates of the potential excess surface and subsurface runoff depths that will enter the 

stream channels. It also provides estimates for evapotranspiration (ET), snowmelt, and 

the amount of water that is stored in the soil, and would affect the discharge estimates in 

the short or the long term. The second component is a water routing component, which is 

responsible for delivering the excess runoff into the channels through surface and 

subsurface lateral flow motions, then transporting the runoff downstream as stream 

discharge (David et al., 2011; Niu et al., 2017). 

In this chapter we evaluate two hydrologic routing components: first, the Routing 

Application for Parallel Computation of Discharge (RAPID) introduced in (David et al., 

2011, 2013), which is a storage-based simplified Muskingum linear routing method. 

Similar to other hydrologic routing approximations, the Muskingum method relies on 

discharge continuity alone and does not take the momentum equation into account. The 

Muskingum method uses the two parameters k and x to accumulate the discharge 

downstream, where k is a storage parameter that has units of time, and x is a weighting 

parameter that is relative to the discharge inputs and outputs of the channel. The 
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estimation of these parameters is explained in David et al., (2011) and Snow (2015) and 

the estimated values can be improved through optimization. Examples of possible cost 

functions that can be used to optimize these parameters are found in David et al., (2011, 

2013), and Tavakoly et al., (2016). The second routing component we evaluate in this 

study is the one implemented in the Hillslope-Link hydrologic Model (HLM) developed 

and used by the Iowa Flood Center (IFC). This routing component is nonlinear and 

accounts for the momentum equation in a simplified form (Ayalew et al., 2014; Cunha et 

al., 2015; and Mantilla, 2007), and the stream velocity is determined based on the 

nonlinear relationship between the discharge and the served area (Paik and Kumar 2004; 

Ghimier et al., 2017). Similar to David et al., (2011), Snow et al., (2016), and Tavakoly et 

al., (2016) we do not account in this study for lateral flows to the channel in our 

calculation for the sake of simplicity and since our sub-catchment sizes are small. This 

means we assume the runoff depth immediately enters the streams in their corresponding 

upstream junctions before the channel routing takes place.  

Our study area is a moderately monitored average-sized basin called the Cedar 

River Basin located in the eastern part of the state of Iowa in the United States. The 

stream discharges of the basin are not affected by any artificial storages (e.g. dams and 

reservoirs) and are monitored by eleven United States Geological Survey (USGS) stream 

gauges that cover various connected and unconnected sub-catchments located within our 

basin of interest. In order conduct inter-comparisons between the observed and simulated 

stream discharges (hourly), we obtained the output of the two routing components at 

these USGS gauge locations for a whole warm season (March through October with a 

two month spin-up period). Both routing components were derived by the same runoff 
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estimates which were generated by the community Land Surface Model (LSM) called 

Noah Multi-Parameter (Noah-MP; Niu et al., 2011), the model inputs are discussed later 

in this chapter. Afterwards, the discharge is aggregated over the same stream network by 

each routing component; for our application we used the digital stream network called the 

National Hydrography Dataset Plus Version 2 (NHDPlus V2, available at 

http://www.horizon-systems.com/nhdplus/). 

Statistical skill scores such as root mean squared error, correlation coefficient, and 

Nash Sutcliff efficiency index are widely used to evaluate the performance of hydrologic 

models. However, comparing two time series with such indices reduces the features of 

the complete time series to one value that does not provide information about the 

variation of the model’s performance across the time series. One can decide to inspect 

individual parts of the time series separately, but this division of the time series can be 

either arbitrary if done using a fixed time window, or difficult to automate if the 

important features in the time series are to be located precisely in time. This implies that 

detecting features of interest in the time series is also a significant part of the evaluation 

problem. In this chapter to evaluate our routing components we use a method that offers 

solutions to both of these problems: first, detecting features of interest, and second, 

evaluating the model’s performance during the time period when they occurred.    

We perform this time-based evaluation using Continuous Wavelet Transform 

(CWT) and Cross-Wavelet Transform XWT (Torrence and Compo 1998; Labat, 2005). 

Wavelet transform analysis provides information about a given time series by filtering its 

frequencies in a time-localized manner. This information cannot be obtained using the 

traditional statistical skill scores such as RMSE and correlation coefficient due to their 
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generality and inability to locate time series’ significant features in time. CWT provides 

information about the significant frequencies that exist in a time series and XWT 

provides information about where these detected frequencies coincide in two time series. 

This event matching is determined by computing the phase difference between the CWTs 

of the different time series. Torrence and Compo (1998) and Foufoula-Georgiou and 

Kumar (1995), are excellent references for a detailed description of CWT and XWT. We 

will briefly review the concepts behind CWT and XWT and elaborate on the use of 

different wavelets, and their advantages and disadvantages in our application. 

Accurate peak time prediction for stream discharge is crucial in hazardous 

situations such as flash floods. Our method and results provide an insight regarding a 

more effective procedure to evaluate routing components in particular and hydrologic 

models in general based on their ability to forecast peak times. The evaluation framework 

we propose in this study should help decision makers and ground responders in making a 

more informed decision regarding peak time occurrence based on the performance of the 

hydrologic model which they receive their information from.      

The rest of this chapter is organized as follows. First we introduce our study area 

and describe the data obtained from the two routing components. Second, we review 

CWT and XWT and different types of wavelets that we used in this study and why we 

used them. Third, we show the results of the study. Lastly, we discuss our conclusions 

and findings. 
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5.2. Study area, data inputs, and routing components 

5.2.1. Study area 

We apply our wavelet-based evaluation method to the stream discharge estimates 

from RAPID and HLM routing components at eleven USGS gauge locations in the Cedar 

River basin. A map of the stream gauge locations is shown in Figure 5.1. and the areas 

they serve are listed in Table 5.1.. As represented in Figure 5.1., our study area mostly 

fall in the “dryland crop” USGS land cover category, with a small area under “developed 

with low intensity category”. There is little to no river regulation effect at our basin, this 

insures that there is no delay in discharge due to storage. The areas served by the USGS 

stream gauges range from 766 km2 at Little Cedar River near Ionia, IA (USGS ID 

05458000) to 16,862 km2 covered by the station at the basin outlet Cedar River at Cedar 

Rapids, IA (USGS ID 05464500). In this study we used hourly stream gauge observations 

to compare to our hourly model outputs, and stream gauge observation were represented 

by green dots. The legend of the four major land cover types is shown in the top right 

corner where 1 is dryland crop, 2 is urban and built-up, 3 is cropland/grassland, and 4 is 

water body. The labels of the USGS gauges correspond to the rankings in Table 5.1..          

5.2.2. Data inputs 

We applied the same runoff estimate which we obtained from the WRF-Hydro 

hydrologic framework (Gochis et al., 2015) to both routing components. WRF-Hydro 

utilizes the Noah-MP LSM (Niu et al., 2011) to estimate the runoff depths. We used the 

Stage IV (Lin and Mitchell 2005) product as the rainfall input to WRF-Hydro; the rainfall 

estimates are projected on an HRAP (Reed and Maidment, 1999) grid with a spatial 

resolution of approximately 4 km x 4 km and a temporal resolution of 1 hour. We also 
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used the NLDAS V2 atmospheric forcings (Xia et al., 2012a,b) to drive WRF-Hydro; the 

dataset is available in a spatial resolution of 1/8˚ and hourly temporal resolution. We ran 

the model for the whole 2014 warm season (March through October), allowing a proper 

spin-up period starting from December 2013 with a proper initialization for channel 

states. We then ingested this runoff in both routing components allowing two months of 

spin-up period for routing. Consequently, our stream discharge estimates cover the period 

between May through October, 2014. 

5.2.3. Routing components 

The methodologies on which each routing component is based can be found in 

Ayalew et al., 2014, Cunha et al., 2015, and David et al., (2013). In short, RAPID is 

based on the linear Muskingum routing method, which is a storage-based method that 

does not account for flow momentum. The finite difference form of the Muskingum 

method can be written as shown in David et al., (2011). This method relies on two key 

parameters, 𝒌 and 𝒙, where 𝒌 is a storage parameter and has units of time and 𝒙 is a 

dimensionless weighting parameter. The 𝒌 and 𝒙 parameters were determined as 

described in Snow (2015). 

On the other hand, the HLM is based on the methodology described in Mantilla 

(2007). In this method the channel velocity exhibits non-linear behavior in relationship 

with the upstream served area. As a simplification for the momentum equation the 

velocity v corresponding to a discharge 𝒒 can be determined as follows, 

𝝂(𝒒) = 𝝂𝟎𝒒𝒍𝒊𝒏𝒌
𝝀𝟏𝑨𝝀𝟐 (5.1) 

then the flow transport can be described as, 

𝒅𝒒𝒍𝒊𝒏𝒌(𝒕)

𝒅𝒕
=

𝝂𝟎𝒒𝒍𝒊𝒏𝒌

𝝀𝟏 (𝒕)𝑨𝝀𝟐

(𝟏−𝝀𝟏)𝒍
[𝒂𝒉 (𝒒𝒓𝒖𝒏𝒐𝒇𝒇(𝒕) + 𝒒𝒃𝒂𝒔𝒆𝒇𝒍𝒐𝒘(𝒕)) − 𝒒𝒍𝒊𝒏𝒌(𝒕) + 𝒒𝒖𝒑(𝒕)] (5.2) 
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where at a certain time 𝒕 the corresponding surface and subsurface lateral inflows are 

𝒒𝒓𝒖𝒏𝒐𝒇𝒇 and 𝒒𝒃𝒂𝒔𝒆𝒇𝒍𝒐𝒘 respectively. The discharge inflow into a stream channel (link) 

from the upstream served area 𝑨 is 𝒒𝒖𝒑 and the total discharge at the outlet junction of a 

stream is 𝒒𝒍𝒊𝒏𝒌. The parameters 𝒗𝟎, 𝝀𝟏, 𝝀𝟐 are global parameters that are equal to 0.3, 0.2, 

and -0.1 respectively and correspond to the USGS hydraulic measurements and the 

methodology described in Paik and Kumar (2004) and Mantilla (2007). 

5.3. Methodology 

Wavelet transform is a useful tool to extract information about time localization of 

certain frequencies in a time series, unlike Fourier transform which does not provide any 

time localization information (Labat, 2005, Torrence and Compo 1998). One can consider 

wavelet transform as an extension to the Windowed Fourier Transform (WFT), where 

CWT extracts information about the signal structure through a filter of scaled and 

translated wavelet instead of an infinite sinusoid. 

5.3.1. Continuous Wavelet Transform (CWT) 

Decomposing a signal into its constituent frequencies can be done in multiple 

ways. First, one can perform the Discrete Fourier Transform, (DFT) on the signal. DFT 

can give us an accurate measure of all the frequencies in a discrete signal 𝒙�́� , as shown in 

Equation (3) by multiplying the signal by infinite harmonics 𝒆−𝟐𝝅𝒊𝒌𝒏/𝑵 , which are also 

called sinusoid, and then calculating the integration of this multiplication from – ∞ to ∞. 

The result 𝒙𝒌 is the magnitude and phase of this particular harmonic with frequency k in 

the time series. If a harmonic with a frequency is in fact a constituent of the signal, the 

integral will show its amplitude and phase in the signal. If however, this particular 

frequency does not contribute to the time series, the summation in Equation (5.7) will be 
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equal to zero. Most natural signals are comprised of waves with various frequencies, 

amplitudes, and phase angles, which in turn result in different integral values. The DFT 

equation for a discrete time series 𝒙𝒏 is given as: 

𝑿𝒌 = ∑ 𝒙𝒏. 𝒆−𝟐𝝅𝒊𝒌𝒏/𝑵𝑵−𝟏
𝒏=𝟎  (5.3) 

where 𝒌 is the frequency of the harmonic; 𝒊 is the imaginary unit; 𝒏 is the location index 

in the time series; and N is the total number of samples to be analyzed in the signal. The 

main disadvantage of DFT is that although it is efficient in filtering the frequencies, it 

does not provide any information about where this particular frequency appeared and 

lasted in the signal. The difference in representation between a frequency which lasted 

throughout the whole signal and another that contributed to the signal for a short time 

period is that Fourier transform calculated for the latter will be dilated in the frequency 

domain. In other words, DFT lacks any information regarding time localization. To 

overcomes this problem, researchers came up with a more advanced way of performing 

the DFT called the Windowed Fourier Transform (WFT), which relies on moving a box 

function which can take different shapes, e.g. a simple rectangle or a Gaussian window 

(Kaiser 1994), and calculating the transform over the location of that box as seen in 

Equation (5.4). 

𝑿[𝒏, 𝒌] = ∑ 𝒙𝒏[𝒏]. 𝒘[𝒏 − 𝝉]. 𝒆−𝟐𝝅𝒊𝒌𝒏/𝑵𝑵−𝟏
𝒏=𝟎  (5.4) 

where 𝒘[𝒏 − 𝝉] is the window function shifted at time 𝝉; and 𝑿[𝒏, 𝒌] is the WFT at a 

particular location 𝝉 and a particular frequency 𝒌. However, the WFT still has its 

disadvantages. This is because WFT uses a fixed size window which forces us to sacrifice 

either detecting the accurate time localization by choosing a large window (one can think 

of DFT as WFT with an infinite size window); or on the other hand, one can choose a 
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very small window which will allow for better time localization but poor frequency 

detection. This brings us to the Continuous Wavelet Transform (CWT), which offers a 

compromise between frequency and time localization detection. Continuous wavelet 

transform is performed through translating scaled versions of a wavelet of a certain 

functional form, called “mother wavelet”, over the time domain of a signal (a hydrograph 

in our case) and calculating the resulting power from the convolution between the 

discrete signal and the wavelet. In order to detect different frequencies in the signal, the 

wavelet is compressed or stretched through scaling. The lower the value of the scale the 

tighter the wavelet becomes, and this in turn amplifies the effect of high frequencies in 

the signal. On the other hand, the higher the value of the wavelet scale the more stretched 

and dilated it becomes, which is good for detecting smoother low frequencies in the 

signal. 

The compliance of CWT with the window size uncertainty is done by offering 

good time localization for the important sharp features by using low scale wavelets. 

Similarly the mild features that cover the wide range of the signal will be detected by 

high scale wavelets that do not offer good time localization. Another advantage of using 

wavelet analysis rather than Fourier transform is the ability to use confined “mother 

wavelets” that can have different shapes based on their functional form, and not an 

infinite sinusoid. As shown in Figure 5.2., some wavelets such as the Morlet wavelet are 

more suitable for detecting frequency properties, while others such as the Derivative of 

Gaussian (DOG) wavelet or Paul wavelet are better for detecting sharp features. One of 

the main goals of this chapter is to stress the significance of the selected wavelet shape, 

and that it can lead to a different interpretation of the properties of our signal. 
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One can use either directional wavelets (a wavelet with an imaginary component), 

such as the Morlet or Paul wavelets, or a real valued wavelet such as the DOG wavelet to 

estimate the CWT. This is not the case for XWT since it solely relies on estimating the 

phase difference between two CWTs. Given a mother wavelet 𝝍 that is equal to the 

original unscaled function 𝝍𝟎 shown in Equations (5.6), (5.7), and (5.8), but instead 

normalized to have unit energy. The CWT of a discrete signal 𝒙�́� can be calculated as 

follows: 

𝑾𝒏
𝒙(𝒔) = ∑ 𝒙�́�

𝑵−𝟏
�́�=𝟏 𝝍∗ [

(�́�−𝒏)𝜹𝒕

𝒔
] (5.5) 

where 𝒔 is the wavelet scale and 𝒏 is a wavelet location parameter which determines the 

wavelet location during the translation across the time domain of the signal. The asterisk 

assigned to 𝝍∗ denotes the complex conjugate, and 𝜹𝒕 is the time step; finally 𝑾 is the 

wavelet spectrum and the wavelet power is obtained by calculating |𝑾𝟐|. It is important 

to note that in the case of a directional wavelet, power is generated from both the real and 

imaginary part. This means the imaginary peak would move the location of maximum 

power if it overlaps with a similar feature in the signal. As described in Torrence and 

Compo (1998), we normalize the power by the variance (𝝈𝟐) in order to have a measure 

relative to that of a white noise process. 

For our CWT analysis we chose three of the most commonly used wavelets. The 

first is the real DOG wavelet in the second order (also called the Mexican hat wavelet or 

Marr wavelet), given by the equation 

𝛙𝟎 (𝛈) =
(−𝟏)𝒎+𝟏

√𝜞(𝒎+
𝟏

𝟐
)

𝒅𝒎

𝒅𝜼𝒎
(𝒆−

𝜼𝟐

𝟐 ), (5.6) 
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where m is the derivative and is equal to 2 and 𝜞 is the gamma function and 𝛈 is a time 

parameter. Second is the directional Paul wavelet in with order of four, 

𝛙𝟎 (𝛈) =
𝟐𝒎𝒊𝒎𝒎!

√𝝅(𝟐𝒎)!
(𝟏 − 𝒊𝛈)−(𝒎+𝟏), (5.7) 

where m is the order and is equal to 4. Lastly is the directional Morlet wavelet, 

𝛙𝟎 (𝛈) = 𝛑−
𝟏

𝟒 𝒆𝒊𝝎𝟎𝛈 𝒆
−𝛈𝟐

𝟐 ,  (5.8) 

where 𝝎𝟎=6 to achieve wavelet admissibility. 

We estimated the 5% significance levels of the wavelets power spectrum 

following Torrence and Compo (1998) by comparing the power spectrum to a 

background red noise. In short, the significance levels were estimated based on the 

hypothesis that our signal can be modeled as a univariate autoregressive with lag-1 AR(1) 

process. Before we proceed with the significance level calculation we had to test our 

signal’s power spectrum decay against that of a theoretical red noise with the same lag-1 

correlation. As an example, we present in Figure 5.3. the power spectrum decay of our 

signal (hydrograph) at the outlet of the basin (Cedar River at Cedar Rapids), where the 

blue line represents our signal and the red line represents the theoretical red noise, the 

lag-1 auto correlation was estimated from the data. One can see that a red noise process is 

a good approximation for our process; this was expected since many geophysical 

processes follow a red noise model. The Fourier power spectrum of the wavelets and the 

corresponding confidence intervals are then calculated as described in Torrence and 

Compo (1998). 

Another important feature in our CWT calculations is the Cone of Influence 

(COI). Similar to Torrence and Compo (1998), in order to perform the integral in 

Equation (5.5) efficiently we chose to perform our calculations in the Fourier space, then 
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calculate the wavelet transform using a reverse Fourier transform of the convolution of 

the Fourier transform of the signal over the Fourier transform of the wavelet. We 

followed a zero padding procedure (adding zeros with a proper length to both ends of our 

series) since our signal is confined in time, which in turn results in artifacts in the wavelet 

transform at the edges of our signal. The COI helps us know where the effect of these 

artifacts is negligible, where all values outside of the COI are reliable. In this chapter, the 

COI as well as the transform-normalized powers are plotted against the Fourier periods of 

the wavelets and not their scales. The Fourier period λ for the same scale s is different 

from one wavelet shape to another; for the Morlet wavelet the Fourier period λ=1.03s, 

while for the Paul wavelet λ=1.4s, and finally for the Mexican hat wavelet λ=3.97s. For 

the sake of consistency in our analysis we are going to refer to the Fourier periods instead 

of the scales of the wavelets. 

5.3.2. Cross-Wavelet Transform (XWT) and phase-time analysis 

The next step after calculating the CWT is to relate these CWTs to each other to 

detect the similarities between our signals. This is done by calculating the CWT of the 

observed and simulated stream discharges, and then the XWT between each simulated 

flow and the observed flow. The XWT is calculated using Equation (5.9): 

𝐖𝒏
𝑿𝒀(𝒔) = 𝐖𝒏

𝑿(𝒔)𝐖𝒏
𝒀∗

(𝒔),  (5.9) 

The Cross-Wavelet power is |𝐖𝒏
𝑿𝒀(𝒔)|, and as we mentioned earlier the XWT is 

complex with an amplitude and phase. Therefore, we only used the Paul and Morlet 

wavelets for this application. The XWT power is an indicator of the locations where both 

signals had similar transform behavior. This is where the wavelet shape plays an 

important role, since if the CWT wasn’t able to detect or merely detected a certain feature 
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in the signal due to the wavelet shape, the XWT power will be weak at the location of this 

feature. The phase difference between the two signals, which is equal to the phase of the 

XWT, is shown in Equation (5.10): 

∅𝒏
𝑿𝒀(𝒔) = 𝒕𝒂𝒏−𝟏 [

𝑰(𝐖𝒏
𝑿𝒀(𝒔))

𝑹(𝐖𝒏
𝑿𝒀(𝒔))

] (5.10) 

where 𝑰 denotes the imaginary component, and 𝑹 is the real component. We then convert 

this phase difference 𝝋 to obtain the time difference 𝜟𝒕 using the Fourier period 𝝀 as 

follows: 

∆𝒕𝒏
𝑿𝒀(𝒔) = ∅𝒏

𝑿𝒀(𝒔) ∗
𝝀

𝟐𝝅
 (5.11) 

As shown in Equation (5.11), the time differences are associated with certain 

scales. However, some scales are more important than others based on the magnitude of 

the XWT at this scale over the locations of our interest. Similar to Liu et al., (2011), we 

decided to represent the time difference between the simulated and observed signals using 

the 𝜟𝒕 at the scale of maximum power. 

Naturally, we are interested in the performance of the routing components during 

extreme events; thus, we estimate the time difference between simulated and observed 

flows at peak locations. This also makes sense since as we have explained earlier, the 

wavelet transform offers good time localization for small scales and not large scales, 

where small scales are associated with sharp peaks. We also had to add more constraints 

to make sure we are getting reliable time difference estimates. First, we only consider the 

periods corresponding to the maximum power at the peak locations and within the COI. 

In Figure 5.4. we show both the Paul and Morlet wavelets with Fourier period 400 on top 

of the hydrograph at the outlet of the basin, where both the wavelets and the hydrographs 

are normalized to have maximum value of 1. One can see that at this Fourier period, the 
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wavelet is intersecting with multiple features in the hydrograph, and as the period 

increases the resulting power will have very poor time localization. In other words, the 

incoming power will result from the convolution of the wavelet with multiple features. 

For this reason we impose our second condition, which is limiting our search for 

maximum power to a maximum Fourier periods of 400 if the COI is not already covering 

this region. This seemed as a good limit as shown in Figure 5.4., since the peaks 

presented in it are the largest peaks, and all other peaks upstream must be smaller. 

5.4. Results 

We start our evaluation of RAPID and the HLM routing by visually comparing 

their CWTs against the CWT we obtained from the observed flow. In this chapter we 

only show the CWT for the hydrographs at the outlet of the basin in order to show the 

effect of the wavelet shape. This example will enable us to observe the different resulting 

power spectra associated with the hydrograph peaks and their time localization with 

regard to wavelet shape. The reasons we only show the CWT at the basin outlet are: first, 

CWT is only implicitly included in our main evaluation method, which is the time 

difference between simulated and observed flows; second, since we have eleven stations 

to analyze, this will result in an overwhelming amount of figures. Therefore, the details of 

the CWT performance across scales can be indirectly explained by our time difference 

analysis. 

In Figure 5.5. we show the observed and simulated hydrograph at the outlet (a), 

the CWTs of the observed (b), HLM routing (c), and RAPID (d), using the Mexican hat 

wavelet. One can see in Figure 5.5. (b) that the two peaks in the hydrograph were 

accurately detected: the first peak ranges between periods of 128 hours to 400 hundred 
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hours and the second peak is wider with period ranging from about 150 to 500 hours. 

Starting from the period of about 500 hours, we can see that the power spectrum from 

both peaks becomes connected, since at this time scale both peaks are covered with one 

large wavelet. This is a good example to show why we enforced our second restriction by 

not considering periods larger than 400. The power spectrum values around 1000 hours 

and 2000 hours on the x axis, before and after the peaks, are caused by the negative 

correlation between the sinking parts of the wavelet and the peaks. If we look at the 

wavelet transform value alone, these regions have negative wavelet transform value. 

However, it is important to understand that we look at the wavelet transform power 

instead of the transform original value because in the case of directional wavelets there is 

an imaginary component that we will either have to look at separately from the real 

component, or otherwise combine the two components together by calculating the power. 

By looking at the HLM routing hydrograph, it is clear that the first peak is larger and 

occurred earlier in comparison to the observed flow; the second peak, however, is smaller 

in magnitude and duration. This is reflected in the CWT power values in Figure 5.5. (c): 

the first spike in power occurred earlier than that of the observation and the signal is 

much stronger all the way to the period of 500. On the other hand, the second peak is 

located approximately between the 128 and 300 periods. For RAPID, we can see that the 

wavelet power occurred earlier for the first peak which is in agreement with the 

hydrograph, and the second peak caused a larger than observation spike in the CWT 

power. Interestingly, because the two RAPID peaks are well separated, due to a very 

early first peak and generally flashy behavior, the connection between the two peaks in 

CWT occurred in a much larger period (about 700 instead of 500). 
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Figure 5.6. and Figure 5.7. are the same as Figure 5.5. but for the Morlet and Paul 

wavelet CWT respectvely. These figures suggest the same qualitative conclusions derived 

from Figure 5.5.. However, one can see that the Morlet wavelet maximum power is 

located between the two peaks, since the maximum correlation between the Morlet 

wavelet and the hydrograph occurs when two humps from the wavelet are co-located with 

the two hydrograph peaks. Nevertheless, this power is shifted to the left because when the 

wavelet is far left (e.g. the first major wavelet hump is located over the second peak), the 

rest of the wavelet peaks do not correlate with the rest of the hydrograph. In the case of 

the Paul wavelet, we can see that the peaks are well confined with a weak connection 

resulting from the imaginary part of the wavelet. It is also interesting to observe how the 

negative correlation due to the sinking part of the wavelet is not separated from the 

positive part happening over the peak, contrary to what happened in the Mexican hat 

wavelet case. This is due to the overlapping of the sinking part of the wavelet with the 

rising imaginary part of the wavelet. This however resulted in a wider continuous base of 

power values at large period. Also, the power peaks are slightly shifted to the left because 

the imaginary component is always ahead of the real component. 

Before we proceed to the XWT calculation, it is important to keep in mind that the 

XWT estimates common power activity locations in both CWTs involved, regardless of 

how strong these activities are. So even if we focus our interests on the 95% significant 

values within the COI and a period less than 400, we still have quite a range of agreement 

between the two CWTs. In order to decide which XWT value at the peak locations is 

going to be used in time difference estimation, we follow the approach described in Liu et 

al., (2011). The challenge in choosing the appropriate Fourier period to estimate the time 
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difference at is the fact that the larger the wavelet is, the more power it produces. This 

means that if the peak was not strongly detected at the proper smaller period (e.g., due to 

the simulated peak looking very different from the observed peak in small periods or due 

to the wavelet shape), the agreement will instead be reached at a large period with bad 

time localization (this is why we stop our search at Fourier period of 400). In most cases 

agreement between the CWTs of the observed and simulated flows was reached in the 

proper scales, but in a few instances however we had to choose the power at period 400 

or near the edge of the COI. Nevertheless, this limitation will not affect our conclusions, 

because we are not intending to use the time difference values to modify the simulated 

hydrographs, e.g. Liu et al., (2011); the values we get will still be an accurate 

representation of the relative performance between the two routing components. 

We now focus our attention to the major peaks in the hydrograph. As shown in 

previous figures, the 2014 season experienced two major events at the Cedar River basin. 

We have estimated the XWT transform at each station using both directional wavelets. In 

Figure 5.8. we show the hydrographs (top), time difference estimated using Equation 

(5.11) (middle), and the XWT (bottom) at the basins outlet. The two vertical grey lines 

over the hydrograph peak locations are where we extracted the power and time 

information. The left column is for RAPID results and the right column represents the 

HLM routing results. We can see how the maximum power is located around the 256 

period band for both routing components. Also, it is clear that the corresponding time 

difference from RAPID at this region at peak locations is much higher in RAPID that it is 

in HLM routing. We show a detailed cross section at peak locations in Figure 5.9.. The 

top panel is for the first event’s cross section and the bottom panel is for the second 
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event’s cross section. The dashed lines represent RAPID and the solid lines represent the 

HLM routing; we represent the power with blue color and the corresponding time 

difference with the red color. We see that maximum power convergence for both routing 

components in both events occurred at periods less than 300. Additionally, one can see 

how the behavior of the time (phase) difference is unstable in regions apart from the 

maximum power. Another important observation is how the magnitude of the power is 

generally larger for the first event than it is for the second event, and how the maximum 

power occurred in a larger period in the first event than it did in the second event. As we 

have mentioned earlier, the power profile indicates common activity between the 

observed and simulated flows; although we have only picked one point (maximum 

power) to estimate the time difference, it is evident that the HLM routing performed 

better across a wide range of periods. 

We then expanded our analysis using the Morlet wavelet upstream by doing the 

same analysis shown in Figure 5.8. and Figure 5.9. at all ten upstream gauge locations. 

Figure 5.10. and Figure 5.11 show the time difference (top), Maximum power (middle), 

and corresponding scale (bottom) for the first and second events respectively using the 

Morlet wavelet at all stream gauge location. The red color represents the HLM routing 

and the green color represents RAPID. Although the chosen periods are the same or 

similar at all stations for both routing components, the time differences are sometimes 

significantly different with the HLM outperforming RAPID in both events at all 

locations. We plot the final estimates of the time differences using the Morlet wavelet 

spatially in Figure 5.12., where positive values indicate that the simulated flow is ahead 

of the observed flow and vice versa. The results show that both routing components 
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performed better in the second event, compared to their performance during the first 

event. What is curious, however, about Figure 5.12. is how the time difference values 

obtained for the first and the second event are not as different as one would have expected 

them to be by visually inspecting the hydrographs. This is of course because one can 

judge by looking at the hydrographs that both routing components performed much better 

in simulating the peak time during the second event than they did for the first event, 

especially in the case of RAPID. As we will see later, this is not the case with the Paul 

wavelet and is mainly caused by the shape of the Morlet wavelet. This is due to the fact 

that the Morlet wavelet at this range of periods (200 to 300) intersects with both peaks, 

and the phase difference at the location of one peak is affected by the performance at the 

other peak as well. 

Figure .13. and Figure 5.14. are the same as Figure 5.8. and Figure 5.9. 

respectively but for the Paul wavelet. In this case we can see how the difference between 

the time difference estimates of the two events is enlarged. This is due to the better time 

localization of the Paul wavelet where the effect of one event on the XWT at the location 

of the other event is small. On the other hand one can also see in Figure 5.15. and Figure 

5.16. that the maximum power did not occur before the period of 400 in few locations. 

Although the time differences are different from those obtained for the Morlet wavelet 

(Figure 5.10. and Figure 5.11.), generally we reach the same conclusions by using the 

Paul wavelet. We lay down the time difference spatially in Figure 5.17.. In this case the 

performance between the first and second events is distinguished properly. We can see 

how RAPID performed much better in the second event in comparison to the first event; 

similar behavior is observed for the HLM routing as well. One can also see how the 
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performance for the first event deteriorated when using the Paul wavelet as the 

contribution from the well-detected second peak diminished. 

5.5. Conclusions and recommendations 

In this chapter we introduced a wavelet-based evaluation method of two 

hydrologic routing components. By looking at the hydrographs it was clear that the 

simplified Muskingum-based routing component RAPID exhibits flashy behavior with 

sharp peaks in comparison to the non-linear HLM routing component. Traditional 

statistical skill scores such as RMSE and correlation coefficient can characterize the 

overall performance of a time series without providing any localized information in time 

about the significant features in the time series. In addition, these skill scores do not 

provide any information regarding the ability of the models to predict an accurate peak 

time, and peak time prediction is of great value to decision makers. Thus, we used the 

wavelet analysis which is widely used in the application of signal processing. CWT 

allowed us to filter the constituent frequencies of the hydrographs and also provided us 

with the locations of high frequency activities which correspond to significant peak 

locations. We also calculated the XWT, which provided us with the locations where both 

the observed and simulated discharges from each routing component experience similar 

power activity. The XWT also has a phase component which is the same as the phase 

difference between the CWTs of the observed and simulated flows. Then we calculated 

the time difference between the simulated and observed flows at peak locations using the 

Fourier period of the wavelet. A unique aspect of our study is that have analyzed the 

same hydrographs using different wavelet shapes. Although we have reached the same 

qualitative conclusion that the HLM routing outperformed RAPID in simulated peak 
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times, there were differences in the interpretation of the routing component performance 

event wise. The significance of these differences is solely dependent on the shape of the 

hydrograph. For example, if we only had one peak in the hydrograph or if the peaks were 

well separated, the choice of wavelet would have been of less importance. On the other 

hand if we had many closely located peaks, the results from the Morlet wavelet would 

have been very hard to analyze since the computed power at one peak location is affected 

by the performance at surrounding peaks. Nevertheless, although the Paul wavelet offers 

better time localization, the location and Fourier period of the maximum power does not 

exactly correspond to the location and width of the feature we would like to detect due to 

the wavelet shape (the imaginary component of the wavelet). Hence, it is recommended 

to always look at the XWTs from different wavelets, especially for the purpose of 

applications such as the time series modification performed in Liu et al., (2011). 
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Table 5.1. A list of USGS gauges 

and their served area. 

Rank USGS ID Area (km2) 

1 5459500 1342 

2 5457700 2792 

3 5458000 766 

4 5463000 911 

5 5458900 2213 

6 5458500 4338 

7 5458300 4044 

8 5463500 780 

9 5464000 13333 

10 5464220 773 

11 5464500 16862 
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Figure 5.1. USGS Land cover is plotted over the study area. The USGS stream gauges 

are represented by green dots. The legend of the four major land cover types is shown in 

the top right corner where 1 is dryland crop, 2 is urban and built-up, 3 is 

cropland/grassland, and 4 is water body. The labels of the USGS gauges correspond to 

the rankings in Table 5.1.. 
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Figure 5.2. Unscaled wavelet function 𝝍𝟎 (𝜼) for the Mexican hat wavelet (left), Paul 

wavelet (middle), and Morlet wavelet (right). The solid lines represent the real 

component of the wavelets, while the dashed line represents the imaginary components 

(Morlet and Paul only). 

 

   



www.manaraa.com

98  
 

 

Figure 5.3. Power spectrum decay of a theoretical AR1 process (red) plotted against the 

power decay obtained from the data. Lag one correlation was estimated using the hourly 

hydrographs data. 
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Figure 5.4. Morlet wavelet (top) and Paul wavelet (bottom) with Fourier periods of 400 

hours plotted against the observed hydrograph at Cedar River at Cedar Rapids (black 

line). The vertical grey line shows the location of center of the wavelet, which coincides 

with a hydrograph peak.  
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Figure 5.5. CWT power outside the COI for the Mexican hat wavelet, observed (top), 

HLM routing (middle), and RAPID (bottom). The x axis unites are Time in hour, and the 

color bar unit is normalized square power.  
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Figure 5.6. CWT power outside the COI for the Morlet wavelet, observed (top), HLM 

routing (middle), and RAPID (bottom). The x axis unites are Time in hour, and the color 

bar unit is normalized square power. 
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Figure 5.7. CWT power outside the COI for the Paul wavelet, observed (top), HLM 

routing (middle), and RAPID (bottom). The x axis unites are Time in hour, and the color 

bar unit is normalized square power. 
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Figure 5.8. Morlet wavelet XWT analysis. The hydrographs (top) with their 

corresponding estimated time differences in hours (middle), and the log2 of the XWT 

power (bottom). The left column represents RAPID results and the right column 

represents the HLM routing results. 
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Figure 5.9. Morlet wavelet XWT analysis. Cross-section profile at the event 1 top and 

event 2 bottom for power (blue) and time difference (red). The solid lines represent the 

HLM results while the dashed lines represent RAPID results.  
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Figure 5.10. Morlet wavelet XWT analysis. Time differences in hours (top), XWT power 

(middle), corresponding period (bottom) for event 1 at all stations. The x-axis is the 

station number, and the green color represents RAPID, while the red color represents the 

HLM routing.  
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Figure 5.11. Morlet wavelet XWT analysis. Time differences in hours (top), XWT power 

(middle), corresponding period (bottom) for event 2 at all stations. The x-axis is the 

station number, and the green color represents RAPID, while the red color represents the 

HLM routing.  
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Figure 5.12. Morlet wavelet XWT analysis. Spatial plot of time differences. Top row 

represents the HLM routing while the bottom row represents RAPID routing. The left 

column shows the results of the first event while the right column is for the estimates of 

the second event.  
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Figure 5.13. Paul wavelet XWT analysis. The hydrographs (top) with their corresponding 

estimated time differences in hours (middle), and the log2 of the XWT power (bottom). 

The left column represents RAPID results and the right column represents the HLM 

routing results.  
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Figure 5.14. Paul wavelet XWT analysis. Cross-section profile at the event 1 top and 

event 2 bottom for power (blue) and time difference (red). The solid lines represent the 

HLM results while the dashed lines represent RAPID results.  
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Figure 5.15. Paul wavelet XWT analysis. Time differences in hours (top), XWT power 

(middle), corresponding period (bottom) for event 1 at all stations. The x-axis is the 

station number, and the green color represents RAPID, while the red color represents the 

HLM routing.  
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Figure 5.16. Paul wavelet XWT analysis. Time differences in hours (top), XWT power 

(middle), corresponding period (bottom) for event 2 at all stations. The x-axis is the 

station number, and the green color represents RAPID, while the red color represents the 

HLM routing. Paul wavelet XWT analysis. Time differences in hours (top), XWT power 

(middle), corresponding period (bottom) for event 2 at all stations. The x-axis is the 

station number, and the green color represents RAPID, while the red color represents the 

HLM routing.  
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Figure 5.17. Paul wavelet XWT analysis. Spatial plot of time differences. Top row 

represents the HLM routing while the bottom row represents RAPID routing. The left 

column shows the results of the first event while the right column is for the estimates of 

the second event.  
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CHAPTER 6: Summary, Conclusions, and Future Work. 

6.1. Summary  

The main focus of this dissertation is to explore the efficiency of using satellite 

rainfall products in hydrologic modeling. My product of interest is the newly released 

IMERG rainfall product which is a level 4 research version product. IMERG combines 

data from multiple space based sensors such as the data collected by PMW sensors on 

board LEO satellites and IR data collected by the GEO IR satellites. It also incorporates 

ground based rainfall estimates from rain gauges. IMERG has a higher spatial and 

temporal resolution compared to its predecessor products collected by the TRMM 

satellite. It also provides more accurate snow and lite precipitation estimates due to the 

Ka band incorporated in DPR on board of the GPM core satellite. The evaluation process 

included both rainfall to rainfall comparisons as well as stream flow comparisons. For 

rainfall to rainfall comparison we used the ground radar based QPE called MRMS as our 

benchmark product. We aggregated MRMS to match the resolution of IMERG and 

compared them using various traditional skill scores and relatively complex. My study 

area is the entire state of Iowa, and my study period was the entire 2016 war season 

(June, July, August, and September) 

This evaluation brought up further questions regarding conducting an evaluation 

framework of remotely sensed rainfall product which is hydrology oriented. This is 

because the hydrologic models significantly distort the original structure of rainfall 

estimates by assigning the rainfall values hydrologic sub-catchments and then 

accumulating them downstream in order to estimate discharge. First, the aggregation 

process propagates the errors downstream thus changing the magnitudes of the overall 
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errors as they accumulate downstream. Second, understanding the structure of the 

accumulated errors becomes a challenge since they no longer exist in the Euclidean space 

but rather in a stream network domain which is dichotomous in nature and affected by the 

connectivity information between the streams. Thus, we decided to use a network based 

spatial statistical framework that used stream distances rather than Euclidean distances, 

and is also capable of incorporating the connectivity between the streams. 

Before proceeding to the evaluation of IMERG as a rainfall input. It was 

necessary to investigate the performance of the hydrologic models we are going to use in 

our study. I investigated the performance of two possible hydrologic modeling 

frameworks. First, the HLM model produced by the IFC. Second, a combination of a 

LSM with an independent routing component. I started by evaluating two possible 

routing methodologies, one linear and the other is non-linear. The evaluation revealed 

that the routing methodology can have a significant impact on the quality of the simulated 

stream flows. I decided to continue my studies using the non-linear routing option due to 

its better performance. Thus, the two final models I used for IMERG evaluation are the 

Noah-MP LSM with HLM routing and the full HLM hydrologic model. 

I conducted the stream flow comparisons at 130 USGS locations within the state 

of Iowa. The gauge selection was based on record availability and to insure minimal 

effect of artificial storage. The evaluation period was the same as what I used for rainfall 

to rainfall comparison. For this purpose I used the widely used statistical skill scores for 

each USGS gauge location. However, again we were faced with some difficulties 

regarding finding a proper skill score to evaluate the performance of the hydrologic 
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models in estimating flood peak times. Several simplistic methods exist for this purpose, 

but they are either not accurate or require manual efforts by the evaluator. 

I decided to use signal processing techniques to evaluate the simulated stream 

discharge. Signal processing techniques are fully automated and they insure that we are 

conducting a fair comparison by detecting the simulated peak that directly correspond to 

the observed peak. In addition, the difference in peak time between the simulated and 

observed peak flows is not only dependent on the location of the maximum value in the 

simulated peak but rather the overall shape and location of the entire peak “hump”. The 

signal processing method I used is called Continuous Wavelet Transform (CWT), and 

provides the possibility of using different wavelet shapes as signal filters. Thus, I 

emphasized on the effect of the wavelet shape on the inference regarding the peak lag 

time. 

 6.2. Conclusions 

In chapters 2 through 5 I conducted four independent studies that are focused on 

the evaluation of satellite rainfall in hydrologic applications. Each chapter is focused on 

one aspect of the evaluation including, hydrologic model performance and selection, 

IMERG comparison with ground based estimates and its performance as a model input, 

evaluation of IMERG in a stream network based framework, and finally a time-based 

evaluation method of hydrologic models’ outputs. The overall conclusion of each chapter 

are as follows: 

Chapter 2: In this chapter I investigated the effect of the routing component on the 

overall performance of the hydrologic models I am going to use in my studies. I 

conducted a detailed comparison between RAPID —a routing component based on the 
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simplified linear routing method called the Muskingum method— and the nonlinear 

routing method used in the HLM hydrologic model. The comparisons showed the using 

the same runoff input, HLM routing outperformed RAPID in all scales. In addition, 

another advantage of HLM routing is that it does not require calibration based on the 

rainfall input which is a capability that RAPID lacks. This is because the Muskingum 

method depends on 2 parameters k and x which need to be continuously calibrated. Thus, 

we decided to carry on the rest of our studies using the HLM routing. 

Chapter 3:   In this chapter I conducted the rainfall to rainfall comparisons as well 

as the stream flow comparisons using IMERG and the benchmark product MRMS as 

rainfall inputs to our hydrologic models. The hydrologic models I used in this study are 

the full HLM model and the Noah-MP with HLM routing. Both models incorporate the 

HLM routing component, however, they have different runoff generation methodologies. 

The rainfall to rainfall comparisons showed that IMERG overestimate the number of 

instances during which lite rainfall occurred and significantly underestimated the number 

of heavy rain instances. In addition, the space time dependence between IMERG rainfall 

estimates is significantly different from the MRMS. The correlation between IMERG 

rainfall estimates extends for ranges that are approximately twice as large as those 

obtained from MRMS rainfall. In addition, the dependence it time extends for about 3 

time lags (in hours) which is not similar to MRMS where the dependence in time 

collapses almost immediately after the first time lag. 

As rainfall inputs, both IMERG and MRMS performance varied based on both 

basin scale and geographical location. However, MRMS usually outperformed IMERG 
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by producing better discharge estimate. In addition, HLM model significantly 

outperformed the Noah-MP with HLM routing. 

Chapter 4: In this chapter I proposed a new method to evaluate remotely sensed 

rainfall products in hydrologic context. In particular, I investigated the spatial dependence 

between the satellite rainfall errors in a network based domain. The investigation of the 

accumulated errors showed that the magnitude of the errors significantly decrease as they 

accumulate downstream. However, it was necessary to investigate the dependence of the 

accumulated errors. Using the Spatial Stream Network (SSN) method, I showed that the 

accumulated errors are strongly affected by the network structure and connectivity 

information. The correlation between the errors in the flow-connected streams extended 

for ranges that are twice as large as those in the flow-unconnected streams. 

Chapter 5: In this chapter I proposed a time-based evaluation of the simulated 

stream flow hydrographs using CWT and XWT. I applied this evaluation method for the 

stream flow estimates produced by HLM routing and RAPID using the same runoff input. 

The results agreed with the evaluations I performed in Chapter 2. In addition, I showed 

that the shape of the wavelet used in the evaluation had an impact on the inference 

regarding model performance. I showed that although the Marr (Mexican Hat) wavelet 

directly correspond to the shape of hydrograph peaks, it is necessary to use a wavelet with 

imaginary component in order to be able to calculate the XWT. This shapes of these 

wavelet does not perfectly match the shape of hydrograph peaks, however, each of these 

wavelet shapes has its own advantages and disadvantages. For our application, I showed 

the Paul wavelet can be more useful in detecting the localized sharp peaks in the 

hydrograph. However, if the hydrograph has many consecutive peaks (high frequency) it 
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would be better to use the Morlet wavelet. I showed that using the Morlet wavelet can 

have negative impact on our inference if only one or two peaks exist in the hydrograph 

since the wavelet will use information from both peaks simultaneously due to the wide 

range it covers. 

6.3. Future work 

In this dissertation I am evaluating IMERG which was recently released by 

NASA, the record of this product starts in March 2014. In addition, the record of our 

benchmark product MRMS start in September, 2015. This small overlap limited our 

number of sample to few months. However, since we are using hourly rainfall rates we 

had a large enough sample to conduct our studies. Hopefully, in the future, the 

benchmark record will reveal the inter-annual variability of the IMERG performance 

when compared to MRMS. In addition, one can use other benchmark products. However, 

we chose MRMS as a benchmark since it is the product currently recognized and 

operationally used by the NWS. Another possible extension to this research would 

include applying the network based evaluation (chapter 4) to other hydrologic model state 

variables such as discharges, soil moisture, etc. In addition,  in chapter 5 I showed the 

efficiency of XWT in matching and comparing peaks. The next step is to connect the 

XWT power estimates and timing differences to the traditional skill scores (e.g., 

correlation coefficient and NSE)  
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